Matières

Matières

Plus

Cours SVT Terminale : Génétique et Brassage Intrachromosomique PDF

Voir

Cours SVT Terminale : Génétique et Brassage Intrachromosomique PDF
user profile picture

Manon GAUTIER

@manongautier_ryki

·

343 Abonnés

Suivre

Genetic inheritance and evolution are key topics in high school biology. This summary covers important concepts like chromosomal crossover, genetic diversity, and molecular evolution. Students will learn about brassage interchromosomique et intrachromosomique, genotype-phenotype relationships, and techniques for analyzing genetic material.

  • Covers fundamental genetic principles and evolutionary mechanisms
  • Explains meiosis, genetic recombination, and origins of genetic diversity
  • Discusses molecular evolution of genes like opsins through mutation and duplication
  • Describes techniques like restriction fragment length polymorphism (RFLP) analysis
  • Explores horizontal gene transfer in prokaryotes through transformation, transduction and conjugation

18/01/2023

1449

génétique
80
individuallelas #
hétérozygote
18 gines indépendants off gênes liés
- sur ch. diff
individu
homozygote
Ich.
homologues
(00
(2n)

Voir

Fundamental Genetic Concepts

This page introduces key genetic terminology and principles essential for understanding inheritance and evolution.

The basics of chromosomes, alleles, and genetic crosses are explained. Diploid organisms have homologous chromosome pairs, while haploid gametes have single chromosomes. Dominant and recessive alleles determine how traits are expressed.

Genetic crosses between pure lines are used to study inheritance of multiple traits. The relationship between genotype (genetic makeup) and phenotype (observable characteristics) is introduced.

Vocabulary: A clone is a group of genetically identical organisms produced by mitosis from a single parent cell.

Definition: Phenotype refers to the observable characteristics of an organism resulting from its genotype interacting with the environment.

Example: The genotype [W+/W+; vg+/vg+] could produce a phenotype of [w+; vg+], representing wild-type eye color and wing shape in Drosophila.

The page also covers cellular components like proteins, lipids and carbohydrates that are involved in expressing genetic information. Understanding these fundamentals provides the foundation for exploring more complex genetic phenomena.

Highlight: Test crosses between heterozygous and homozygous recessive individuals can determine if genes are linked or independent.

génétique
80
individuallelas #
hétérozygote
18 gines indépendants off gênes liés
- sur ch. diff
individu
homozygote
Ich.
homologues
(00
(2n)

Voir

Genetic Recombination Mechanisms

This page delves into the mechanisms of genetic recombination that generate diversity, focusing on brassage interchromosomique et intrachromosomique.

Brassage interchromosomique occurs between genes on different chromosomes during meiosis. The independent assortment of chromosomes in metaphase I leads to new combinations of alleles in gametes. This process is key for creating genetic variability in offspring.

Definition: Brassage interchromosomique refers to the shuffling of genetic material between different chromosomes during meiosis, leading to new combinations of alleles in gametes.

Brassage intrachromosomique involves genes located on the same chromosome. Crossing over during prophase I of meiosis allows segments of homologous chromosomes to exchange, creating new allele combinations. This process can break up linked genes, further increasing genetic diversity.

Vocabulary: Chiasma is the point where homologous chromosomes exchange genetic material during crossing over.

The page illustrates these processes with detailed diagrams showing chromosome behavior during meiosis. It demonstrates how different types of gametes are produced, including parental and recombinant types.

Example: In a dihybrid cross involving linked genes, crossing over can produce four types of gametes: two parental types (AB, ab) and two recombinant types (Ab, aB).

Understanding these mechanisms is crucial for predicting inheritance patterns and explaining the genetic diversity observed in populations. These concepts are fundamental to topics in Génétique et évolution Terminale SVT.

Highlight: The frequency of recombination between linked genes can be used to map their relative positions on a chromosome.

génétique
80
individuallelas #
hétérozygote
18 gines indépendants off gênes liés
- sur ch. diff
individu
homozygote
Ich.
homologues
(00
(2n)

Voir

Molecular Evolution and Genetic Analysis

This page explores molecular evolution, focusing on the origin of opsin genes, and introduces techniques for genetic analysis.

The evolution of opsin genes, responsible for color vision, is presented as a case study in molecular evolution. Through processes like gene duplication, mutation, and transposition, a single ancestral pigment gene diversified into multiple opsin genes (S, M, L) over evolutionary time.

Example: The duplication and subsequent mutation of an ancestral opsin gene led to the development of trichromatic vision in some primates, including humans.

The page also covers the endosymbiotic theory, explaining the origin of eukaryotic organelles like mitochondria and chloroplasts from prokaryotic ancestors. This theory is crucial for understanding the evolution of complex cellular structures.

Definition: Endosymbiosis is a symbiotic relationship in which one organism lives inside the cells of another, as seen in the origin of mitochondria and chloroplasts.

Restriction Fragment Length Polymorphism (RFLP) analysis is introduced as a technique for detecting genetic variations. This method involves cutting DNA with restriction enzymes, amplifying the fragments, and separating them by electrophoresis.

Vocabulary: Restriction enzymes are proteins that cut DNA at specific sequences, used in genetic engineering and analysis techniques like RFLP.

The page concludes with an overview of horizontal gene transfer in prokaryotes, including transformation, transduction, and conjugation. These mechanisms allow genetic material to be exchanged between unrelated organisms, contributing to bacterial evolution and adaptation.

Highlight: Horizontal gene transfer can occur between different species, playing a significant role in prokaryotic evolution and the spread of antibiotic resistance.

Understanding these concepts and techniques is essential for students studying Génétique cours Terminale and preparing for exams like Sujet bac SVT génétique et évolution corrigé.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

13 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.

Cours SVT Terminale : Génétique et Brassage Intrachromosomique PDF

user profile picture

Manon GAUTIER

@manongautier_ryki

·

343 Abonnés

Suivre

Genetic inheritance and evolution are key topics in high school biology. This summary covers important concepts like chromosomal crossover, genetic diversity, and molecular evolution. Students will learn about brassage interchromosomique et intrachromosomique, genotype-phenotype relationships, and techniques for analyzing genetic material.

  • Covers fundamental genetic principles and evolutionary mechanisms
  • Explains meiosis, genetic recombination, and origins of genetic diversity
  • Discusses molecular evolution of genes like opsins through mutation and duplication
  • Describes techniques like restriction fragment length polymorphism (RFLP) analysis
  • Explores horizontal gene transfer in prokaryotes through transformation, transduction and conjugation

18/01/2023

1449

 

Tle

 

SVT

72

génétique
80
individuallelas #
hétérozygote
18 gines indépendants off gênes liés
- sur ch. diff
individu
homozygote
Ich.
homologues
(00
(2n)

Fundamental Genetic Concepts

This page introduces key genetic terminology and principles essential for understanding inheritance and evolution.

The basics of chromosomes, alleles, and genetic crosses are explained. Diploid organisms have homologous chromosome pairs, while haploid gametes have single chromosomes. Dominant and recessive alleles determine how traits are expressed.

Genetic crosses between pure lines are used to study inheritance of multiple traits. The relationship between genotype (genetic makeup) and phenotype (observable characteristics) is introduced.

Vocabulary: A clone is a group of genetically identical organisms produced by mitosis from a single parent cell.

Definition: Phenotype refers to the observable characteristics of an organism resulting from its genotype interacting with the environment.

Example: The genotype [W+/W+; vg+/vg+] could produce a phenotype of [w+; vg+], representing wild-type eye color and wing shape in Drosophila.

The page also covers cellular components like proteins, lipids and carbohydrates that are involved in expressing genetic information. Understanding these fundamentals provides the foundation for exploring more complex genetic phenomena.

Highlight: Test crosses between heterozygous and homozygous recessive individuals can determine if genes are linked or independent.

génétique
80
individuallelas #
hétérozygote
18 gines indépendants off gênes liés
- sur ch. diff
individu
homozygote
Ich.
homologues
(00
(2n)

Genetic Recombination Mechanisms

This page delves into the mechanisms of genetic recombination that generate diversity, focusing on brassage interchromosomique et intrachromosomique.

Brassage interchromosomique occurs between genes on different chromosomes during meiosis. The independent assortment of chromosomes in metaphase I leads to new combinations of alleles in gametes. This process is key for creating genetic variability in offspring.

Definition: Brassage interchromosomique refers to the shuffling of genetic material between different chromosomes during meiosis, leading to new combinations of alleles in gametes.

Brassage intrachromosomique involves genes located on the same chromosome. Crossing over during prophase I of meiosis allows segments of homologous chromosomes to exchange, creating new allele combinations. This process can break up linked genes, further increasing genetic diversity.

Vocabulary: Chiasma is the point where homologous chromosomes exchange genetic material during crossing over.

The page illustrates these processes with detailed diagrams showing chromosome behavior during meiosis. It demonstrates how different types of gametes are produced, including parental and recombinant types.

Example: In a dihybrid cross involving linked genes, crossing over can produce four types of gametes: two parental types (AB, ab) and two recombinant types (Ab, aB).

Understanding these mechanisms is crucial for predicting inheritance patterns and explaining the genetic diversity observed in populations. These concepts are fundamental to topics in Génétique et évolution Terminale SVT.

Highlight: The frequency of recombination between linked genes can be used to map their relative positions on a chromosome.

génétique
80
individuallelas #
hétérozygote
18 gines indépendants off gênes liés
- sur ch. diff
individu
homozygote
Ich.
homologues
(00
(2n)

Molecular Evolution and Genetic Analysis

This page explores molecular evolution, focusing on the origin of opsin genes, and introduces techniques for genetic analysis.

The evolution of opsin genes, responsible for color vision, is presented as a case study in molecular evolution. Through processes like gene duplication, mutation, and transposition, a single ancestral pigment gene diversified into multiple opsin genes (S, M, L) over evolutionary time.

Example: The duplication and subsequent mutation of an ancestral opsin gene led to the development of trichromatic vision in some primates, including humans.

The page also covers the endosymbiotic theory, explaining the origin of eukaryotic organelles like mitochondria and chloroplasts from prokaryotic ancestors. This theory is crucial for understanding the evolution of complex cellular structures.

Definition: Endosymbiosis is a symbiotic relationship in which one organism lives inside the cells of another, as seen in the origin of mitochondria and chloroplasts.

Restriction Fragment Length Polymorphism (RFLP) analysis is introduced as a technique for detecting genetic variations. This method involves cutting DNA with restriction enzymes, amplifying the fragments, and separating them by electrophoresis.

Vocabulary: Restriction enzymes are proteins that cut DNA at specific sequences, used in genetic engineering and analysis techniques like RFLP.

The page concludes with an overview of horizontal gene transfer in prokaryotes, including transformation, transduction, and conjugation. These mechanisms allow genetic material to be exchanged between unrelated organisms, contributing to bacterial evolution and adaptation.

Highlight: Horizontal gene transfer can occur between different species, playing a significant role in prokaryotic evolution and the spread of antibiotic resistance.

Understanding these concepts and techniques is essential for students studying Génétique cours Terminale and preparing for exams like Sujet bac SVT génétique et évolution corrigé.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

13 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.