Matières

Matières

Plus

Comment simplifier une fraction et découvrir le Théorème de Thalès

Voir

Comment simplifier une fraction et découvrir le Théorème de Thalès
user profile picture

Dal Clémentine

@dalclmentine_gqtj

·

7 Abonnés

Suivre

The Théorème de Thalès exercice corrigé PDF and fraction simplification exercises demonstrate key mathematical concepts through practical problem-solving.

Key points:

  • Detailed breakdown of prime factorization for numbers 6120 and 5712
  • Application of Thales' theorem in geometric problems with parallel lines
  • Pythagorean theorem usage in right-angled triangles
  • Real-world application through a confectioner's problem
  • Step-by-step solutions for finding lengths and distances
...

16/03/2022

115

Dal
Clémentine
Exercice 1
Exercice 1:
1.
5/5
1. Décomposer les nombres 6 120 et 5712 en produit de facteurs premiers.
2. En déduire la liste

Voir

Exercise 2: Application of Thales Theorem

This exercise focuses on the application of the Théorème de Thalès to calculate various lengths in a complex geometric figure. The problem provides a diagram with parallel lines and several given measurements.

Definition: The Théorème de Thalès states that a line parallel to one side of a triangle divides the other two sides in the same ratio.

The exercise begins by identifying that WQ is parallel to UP, which allows for the application of the Thales theorem. The goal is to find the exact values and approximate measurements (to the nearest millimeter) of RQ, SR, US, and MU.

Example: To find RQ, the Thales theorem is applied in triangle MQR: MP/MQ = SP/RQ, resulting in RQ = (10 x 5) / 7 ≈ 7.1 cm

The solution proceeds step-by-step, using the Thales theorem multiple times to calculate the required lengths:

  1. RQ is calculated to be approximately 7.1 cm
  2. SR is found to be 2.5 cm (after calculating MR using Thales theorem)
  3. US is determined to be 4.9 cm
  4. MU is calculated to be approximately 9.3 cm

Highlight: The exercise demonstrates how the Thales theorem can be applied repeatedly in a complex figure to find multiple unknown lengths.

This problem showcases the practical application of the Théorème de Thalès in solving geometric problems and highlights the importance of precise calculations in geometry.

Dal
Clémentine
Exercice 1
Exercice 1:
1.
5/5
1. Décomposer les nombres 6 120 et 5712 en produit de facteurs premiers.
2. En déduire la liste

Voir

Exercise 3: Pythagorean Theorem and Length Calculations

This exercise combines the use of the Pythagorean theorem with given measurements to solve for unknown lengths in a right-angled triangle. The problem presents a diagram of triangle GTR, which is right-angled at T, with some known side lengths.

Definition: The Pythagorean theorem states that in a right-angled triangle, the square of the length of the hypotenuse is equal to the sum of squares of the other two sides.

The exercise is divided into two parts:

  1. Calculate the exact value of RT
  2. Calculate the approximate value of RK to the nearest millimeter

Highlight: The exact value of RT is given as 51 cm, which is a key piece of information for solving the rest of the problem.

To solve for RK, the exercise first calculates RG using the Pythagorean theorem in the right-angled triangle RTG:

RG² = RT² + TG² = 51² + 68² = 7225 RG = √7225 = 85 cm

Example: The Pythagorean theorem is then applied again in triangle RKG to find RK: RK² = RG² + GK² = 85² + 57² = 10479 RK ≈ 102.3 cm (to the nearest millimeter)

This exercise demonstrates the practical application of the Pythagorean theorem in solving complex geometric problems and highlights the importance of step-by-step problem-solving in mathematics.

Vocabulary: Décomposition en produit de facteurs premiers refers to the process of breaking down a number into its prime factors, which is a fundamental concept in number theory and algebra.

Dal
Clémentine
Exercice 1
Exercice 1:
1.
5/5
1. Décomposer les nombres 6 120 et 5712 en produit de facteurs premiers.
2. En déduire la liste

Voir

Advanced Length Calculations

Continuation of the geometric problem using Théorème de Thalès Exercice corrigé 4ème principles.

Example: SR = MR - MS = (60/7) - 6 = 2.5 cm (rounded to nearest millimeter)

Highlight: Multiple applications of Thales' theorem to find different lengths in the same figure.

Dal
Clémentine
Exercice 1
Exercice 1:
1.
5/5
1. Décomposer les nombres 6 120 et 5712 en produit de facteurs premiers.
2. En déduire la liste

Voir

Right Triangle and Pythagorean Theorem

The final page covers a right triangle problem combining the Pythagorean theorem with previous concepts.

Definition: The Pythagorean theorem states that in a right triangle, a² + b² = c².

Example: RG² = RT² + TG² = 51² + 68² = 7225

Highlight: The solution requires multiple applications of the Pythagorean theorem to find RK = 102.3 cm.

Dal
Clémentine
Exercice 1
Exercice 1:
1.
5/5
1. Décomposer les nombres 6 120 et 5712 en produit de facteurs premiers.
2. En déduire la liste

Voir

Exercise 1: Prime Factorization and Greatest Common Divisor

This exercise demonstrates the process of prime factorization and its application in finding the greatest common divisor (GCD) of two numbers. It also shows how to simplify fractions and solve a practical problem involving the distribution of candies.

Definition: Prime factorization is the process of breaking down a number into the product of its prime factors.

The exercise begins by decomposing the numbers 6120 and 5712 into their prime factors:

6120 = 2 x 2 x 2 x 3 x 3 x 5 x 17 5712 = 2 x 2 x 2 x 2 x 3 x 7 x 17

Example: To find the common divisors, we identify the shared prime factors between the two numbers.

The exercise then lists all the common divisors of these two numbers, which include 2, 3, 4, 6, 8, 12, 17, 24, 34, 51, 68, 102, 136, 204, and 408.

Highlight: The greatest common divisor (GCD) of 6120 and 5712 is determined to be 408.

Finally, the exercise applies this knowledge to a practical scenario involving a confectioner distributing dragées and pebble-shaped candies. The solution shows that the confectioner can make 408 packets, each containing 14 pebble-shaped candies and 15 dragées.

Vocabulary: Fraction irréductible refers to a fraction that cannot be further simplified, which is achieved by dividing both the numerator and denominator by their greatest common divisor.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

17 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 17 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.

Comment simplifier une fraction et découvrir le Théorème de Thalès

The Théorème de Thalès exercice corrigé PDF and fraction simplification exercises demonstrate key mathematical concepts through practical problem-solving.

Key points:

  • Detailed breakdown of prime factorization for numbers 6120 and 5712
  • Application of Thales' theorem in geometric problems with parallel lines
  • Pythagorean theorem usage in right-angled triangles
  • Real-world application through a confectioner's problem
  • Step-by-step solutions for finding lengths and distances
...

16/03/2022

115

 

3e

 

Maths

4

Dal
Clémentine
Exercice 1
Exercice 1:
1.
5/5
1. Décomposer les nombres 6 120 et 5712 en produit de facteurs premiers.
2. En déduire la liste

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Exercise 2: Application of Thales Theorem

This exercise focuses on the application of the Théorème de Thalès to calculate various lengths in a complex geometric figure. The problem provides a diagram with parallel lines and several given measurements.

Definition: The Théorème de Thalès states that a line parallel to one side of a triangle divides the other two sides in the same ratio.

The exercise begins by identifying that WQ is parallel to UP, which allows for the application of the Thales theorem. The goal is to find the exact values and approximate measurements (to the nearest millimeter) of RQ, SR, US, and MU.

Example: To find RQ, the Thales theorem is applied in triangle MQR: MP/MQ = SP/RQ, resulting in RQ = (10 x 5) / 7 ≈ 7.1 cm

The solution proceeds step-by-step, using the Thales theorem multiple times to calculate the required lengths:

  1. RQ is calculated to be approximately 7.1 cm
  2. SR is found to be 2.5 cm (after calculating MR using Thales theorem)
  3. US is determined to be 4.9 cm
  4. MU is calculated to be approximately 9.3 cm

Highlight: The exercise demonstrates how the Thales theorem can be applied repeatedly in a complex figure to find multiple unknown lengths.

This problem showcases the practical application of the Théorème de Thalès in solving geometric problems and highlights the importance of precise calculations in geometry.

Dal
Clémentine
Exercice 1
Exercice 1:
1.
5/5
1. Décomposer les nombres 6 120 et 5712 en produit de facteurs premiers.
2. En déduire la liste

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Exercise 3: Pythagorean Theorem and Length Calculations

This exercise combines the use of the Pythagorean theorem with given measurements to solve for unknown lengths in a right-angled triangle. The problem presents a diagram of triangle GTR, which is right-angled at T, with some known side lengths.

Definition: The Pythagorean theorem states that in a right-angled triangle, the square of the length of the hypotenuse is equal to the sum of squares of the other two sides.

The exercise is divided into two parts:

  1. Calculate the exact value of RT
  2. Calculate the approximate value of RK to the nearest millimeter

Highlight: The exact value of RT is given as 51 cm, which is a key piece of information for solving the rest of the problem.

To solve for RK, the exercise first calculates RG using the Pythagorean theorem in the right-angled triangle RTG:

RG² = RT² + TG² = 51² + 68² = 7225 RG = √7225 = 85 cm

Example: The Pythagorean theorem is then applied again in triangle RKG to find RK: RK² = RG² + GK² = 85² + 57² = 10479 RK ≈ 102.3 cm (to the nearest millimeter)

This exercise demonstrates the practical application of the Pythagorean theorem in solving complex geometric problems and highlights the importance of step-by-step problem-solving in mathematics.

Vocabulary: Décomposition en produit de facteurs premiers refers to the process of breaking down a number into its prime factors, which is a fundamental concept in number theory and algebra.

Dal
Clémentine
Exercice 1
Exercice 1:
1.
5/5
1. Décomposer les nombres 6 120 et 5712 en produit de facteurs premiers.
2. En déduire la liste

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Advanced Length Calculations

Continuation of the geometric problem using Théorème de Thalès Exercice corrigé 4ème principles.

Example: SR = MR - MS = (60/7) - 6 = 2.5 cm (rounded to nearest millimeter)

Highlight: Multiple applications of Thales' theorem to find different lengths in the same figure.

Dal
Clémentine
Exercice 1
Exercice 1:
1.
5/5
1. Décomposer les nombres 6 120 et 5712 en produit de facteurs premiers.
2. En déduire la liste

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Right Triangle and Pythagorean Theorem

The final page covers a right triangle problem combining the Pythagorean theorem with previous concepts.

Definition: The Pythagorean theorem states that in a right triangle, a² + b² = c².

Example: RG² = RT² + TG² = 51² + 68² = 7225

Highlight: The solution requires multiple applications of the Pythagorean theorem to find RK = 102.3 cm.

Dal
Clémentine
Exercice 1
Exercice 1:
1.
5/5
1. Décomposer les nombres 6 120 et 5712 en produit de facteurs premiers.
2. En déduire la liste

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Exercise 1: Prime Factorization and Greatest Common Divisor

This exercise demonstrates the process of prime factorization and its application in finding the greatest common divisor (GCD) of two numbers. It also shows how to simplify fractions and solve a practical problem involving the distribution of candies.

Definition: Prime factorization is the process of breaking down a number into the product of its prime factors.

The exercise begins by decomposing the numbers 6120 and 5712 into their prime factors:

6120 = 2 x 2 x 2 x 3 x 3 x 5 x 17 5712 = 2 x 2 x 2 x 2 x 3 x 7 x 17

Example: To find the common divisors, we identify the shared prime factors between the two numbers.

The exercise then lists all the common divisors of these two numbers, which include 2, 3, 4, 6, 8, 12, 17, 24, 34, 51, 68, 102, 136, 204, and 408.

Highlight: The greatest common divisor (GCD) of 6120 and 5712 is determined to be 408.

Finally, the exercise applies this knowledge to a practical scenario involving a confectioner distributing dragées and pebble-shaped candies. The solution shows that the confectioner can make 408 packets, each containing 14 pebble-shaped candies and 15 dragées.

Vocabulary: Fraction irréductible refers to a fraction that cannot be further simplified, which is achieved by dividing both the numerator and denominator by their greatest common divisor.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

17 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 17 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.