Matières

Matières

Plus

Cours Logarithme et Ln: Découvre les Formules et Propriétés PDF

Voir

Cours Logarithme et Ln: Découvre les Formules et Propriétés PDF

The logarithmic function is a fundamental concept in mathematics, with wide-ranging applications. This summary explores the logarithme népérien (natural logarithm) and logarithme décimal (common logarithm), their properties, and key formulas. The text covers definitions, function behavior, and algebraic properties, providing a comprehensive overview for students studying advanced mathematics.

• The natural logarithm (ln) is defined as the inverse of the exponential function.
• The logarithmic function is strictly increasing on its domain (0, +∞).
• Key properties of logarithms include rules for products, quotients, and powers.
• The text compares natural and common logarithms, highlighting their similarities and differences.

26/05/2022

826

Définition:
a> 0
a est l'unique solution réelle de l'équation ex = a, autrement dit:
ex = a ⇒ x = In a
Cas particulier :
•ex = 1 ⇒ x = ln 1

Voir

Logarithmic Properties and Common Logarithm

This page delves deeper into the properties of logarithms, introducing the common logarithm and presenting important algebraic properties of the natural logarithm.

The text begins by stating two crucial limits of the natural logarithm:

Highlight: • lim(x→+∞) ln x = +∞ • lim(x→0+) ln x = -∞

These limits describe the behavior of ln x as x approaches infinity and zero from the right, respectively.

The logarithme décimal (common logarithm, denoted as log) is then introduced:

Definition: The common logarithm is defined as log(x) = ln(x) / ln(10).

A graph comparing the natural and common logarithms is provided, illustrating their similar shapes but different scales. Key points for the common logarithm are noted:

• log 1 = 0 • log 10 = 1 • log 100 = 2

The text then presents important algebraic properties of the natural logarithm:

Highlight: For a > 0, b > 0, and n ∈ ℝ: • ln(a × b) = ln a + ln b • ln(a/b) = ln a - ln b • ln(a^n) = n ln a • ln(1/a) = -ln a • ln(√a) = ½ ln a

Vocabulary: "Propriétés algébriques" means algebraic properties, which are fundamental rules for manipulating logarithmic expressions.

The page concludes by noting that these properties also apply to the common logarithm (log x).

Finally, the derivative of a composite logarithmic function is presented:

Formula: For u(x) > 0, if f(x) = ln(u(x)), then f'(x) = u'(x) / u(x).

This formula is crucial for differentiating more complex logarithmic expressions and is widely used in calculus.

Définition:
a> 0
a est l'unique solution réelle de l'équation ex = a, autrement dit:
ex = a ⇒ x = In a
Cas particulier :
•ex = 1 ⇒ x = ln 1

Voir

Natural Logarithm Definition and Properties

The logarithme népérien (natural logarithm) is a crucial concept in mathematics, defined as the inverse of the exponential function. This page introduces its definition, key properties, and function behavior.

Definition: For a > 0, ln a is the unique real solution to the equation e^x = a. In other words, if e^x = a, then x = ln a.

Example: Two important cases are highlighted: • e^x = 1 ⇒ x = ln 1 = 0 • e^x = e ⇒ x = ln e = 1

The text also introduces a fundamental property of natural logarithms:

Highlight: For all x in (0, +∞), ln(e^x) = x, and for all real x, e^(ln x) = x.

The function f(x) = ln x is then studied in detail:

  1. It is defined and differentiable on the interval (0, +∞).
  2. Its derivative is f'(x) = 1/x.
  3. Since x > 0 and 1/x > 0, the derivative is always positive, making the function strictly increasing.

Vocabulary: The term "strictement croissante" means strictly increasing, indicating that as x increases, ln x also increases, but at a decreasing rate.

The page concludes with a graph illustrating the behavior of the natural logarithm function, showing its key points such as ln(1) = 0 and ln(e) = 1.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

15 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.

Cours Logarithme et Ln: Découvre les Formules et Propriétés PDF

The logarithmic function is a fundamental concept in mathematics, with wide-ranging applications. This summary explores the logarithme népérien (natural logarithm) and logarithme décimal (common logarithm), their properties, and key formulas. The text covers definitions, function behavior, and algebraic properties, providing a comprehensive overview for students studying advanced mathematics.

• The natural logarithm (ln) is defined as the inverse of the exponential function.
• The logarithmic function is strictly increasing on its domain (0, +∞).
• Key properties of logarithms include rules for products, quotients, and powers.
• The text compares natural and common logarithms, highlighting their similarities and differences.

26/05/2022

826

 

Tle

 

Maths

15

Définition:
a> 0
a est l'unique solution réelle de l'équation ex = a, autrement dit:
ex = a ⇒ x = In a
Cas particulier :
•ex = 1 ⇒ x = ln 1

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Logarithmic Properties and Common Logarithm

This page delves deeper into the properties of logarithms, introducing the common logarithm and presenting important algebraic properties of the natural logarithm.

The text begins by stating two crucial limits of the natural logarithm:

Highlight: • lim(x→+∞) ln x = +∞ • lim(x→0+) ln x = -∞

These limits describe the behavior of ln x as x approaches infinity and zero from the right, respectively.

The logarithme décimal (common logarithm, denoted as log) is then introduced:

Definition: The common logarithm is defined as log(x) = ln(x) / ln(10).

A graph comparing the natural and common logarithms is provided, illustrating their similar shapes but different scales. Key points for the common logarithm are noted:

• log 1 = 0 • log 10 = 1 • log 100 = 2

The text then presents important algebraic properties of the natural logarithm:

Highlight: For a > 0, b > 0, and n ∈ ℝ: • ln(a × b) = ln a + ln b • ln(a/b) = ln a - ln b • ln(a^n) = n ln a • ln(1/a) = -ln a • ln(√a) = ½ ln a

Vocabulary: "Propriétés algébriques" means algebraic properties, which are fundamental rules for manipulating logarithmic expressions.

The page concludes by noting that these properties also apply to the common logarithm (log x).

Finally, the derivative of a composite logarithmic function is presented:

Formula: For u(x) > 0, if f(x) = ln(u(x)), then f'(x) = u'(x) / u(x).

This formula is crucial for differentiating more complex logarithmic expressions and is widely used in calculus.

Définition:
a> 0
a est l'unique solution réelle de l'équation ex = a, autrement dit:
ex = a ⇒ x = In a
Cas particulier :
•ex = 1 ⇒ x = ln 1

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Natural Logarithm Definition and Properties

The logarithme népérien (natural logarithm) is a crucial concept in mathematics, defined as the inverse of the exponential function. This page introduces its definition, key properties, and function behavior.

Definition: For a > 0, ln a is the unique real solution to the equation e^x = a. In other words, if e^x = a, then x = ln a.

Example: Two important cases are highlighted: • e^x = 1 ⇒ x = ln 1 = 0 • e^x = e ⇒ x = ln e = 1

The text also introduces a fundamental property of natural logarithms:

Highlight: For all x in (0, +∞), ln(e^x) = x, and for all real x, e^(ln x) = x.

The function f(x) = ln x is then studied in detail:

  1. It is defined and differentiable on the interval (0, +∞).
  2. Its derivative is f'(x) = 1/x.
  3. Since x > 0 and 1/x > 0, the derivative is always positive, making the function strictly increasing.

Vocabulary: The term "strictement croissante" means strictly increasing, indicating that as x increases, ln x also increases, but at a decreasing rate.

The page concludes with a graph illustrating the behavior of the natural logarithm function, showing its key points such as ln(1) = 0 and ln(e) = 1.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

15 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.