Matières

Matières

Plus

Cours et Exercices Trigonométrie et Dérivation 1ère S PDF

Ouvrir

16

0

user profile picture

𝔸𝕄𝔹ℝ𝔼💐

22/02/2023

Maths

Trigonométrie et dérivation d’un point de vue global maths première spé

Cours et Exercices Trigonométrie et Dérivation 1ère S PDF

This comprehensive guide covers trigonometry and derivatives for first-year high school students. It includes key formulas, examples, and step-by-step solutions to help students master these essential mathematical concepts.

Key topics covered:

  • Trigonometric functions and their properties
  • Radian measure and angle conversions
  • Derivative rules and applications
  • Derivatives of common functions
  • Derivative operations on functions

The guide provides clear explanations, visual aids, and practical examples to reinforce understanding and problem-solving skills in trigonometry and calculus.

...

22/02/2023

548

tableau
O
COS X 1
Sin ac
O
2
l'angle au centre
Un radian note rad est la mesure de l'angle
qui intercepe un arc de longueur 1 sur le cercle

Voir

Derivatives: Fundamental Concepts and Rules

This page delves into the core concepts of derivatives, presenting a comprehensive overview of derivative rules for various functions and operations.

Basic Derivative Rules

The page begins with a table of derivative rules for common functions, providing a quick reference for students. These rules form the foundation for more complex derivative calculations.

Highlight: Key derivative rules include:

  • Constant function: f(x) = c, f'(x) = 0
  • Linear function: f(x) = ax + b, f'(x) = a
  • Power function: f(x) = x^n, f'(x) = nx^(n-1)
  • Square root function: f(x) = √x, f'(x) = 1/(2√x)

Derivative Operations on Functions

The guide then explores how derivatives behave under various operations, such as addition, multiplication, and composition of functions.

Example: For the sum of functions (u + v), the derivative is u' + v'.

For the product of functions (u × v), the derivative is u'v + uv'.

These rules are essential for tackling more complex functions and real-world applications of calculus.

Special Derivative Rules

The page also covers some special derivative rules, including the chain rule and the quotient rule.

Vocabulary: The chain rule is used for composite functions, while the quotient rule is applied to ratios of functions.

Understanding these rules allows students to differentiate a wide range of functions encountered in advanced mathematics and physics.

Practical Applications

The importance of derivatives in various fields is emphasized, highlighting their role in optimization, rate of change problems, and physics applications.

Highlight: Derivatives are crucial in fields such as economics (marginal analysis), physics (velocity and acceleration), and engineering (optimization problems).

This page provides a solid foundation for students to tackle more advanced derivative problems and applications in subsequent lessons.

tableau
O
COS X 1
Sin ac
O
2
l'angle au centre
Un radian note rad est la mesure de l'angle
qui intercepe un arc de longueur 1 sur le cercle

Voir

Derivative Examples and Problem-Solving Techniques

This page focuses on applying derivative rules to solve various types of problems, providing step-by-step examples to reinforce understanding.

Sum and Difference Rule Example

The page begins with an example demonstrating the application of the sum rule for derivatives.

Example: Find the derivative of f(x) = x² + √x

Solution: f'(x) = 2x + 1/(2√x)

This example illustrates how to break down a function into its components and apply the appropriate derivative rules.

Constant Multiple Rule Example

The guide then shows how to use the constant multiple rule in conjunction with other derivative rules.

Example: Find the derivative of f(x) = 5x³

Solution: f'(x) = 5 × 3x² = 15x²

This example demonstrates how to handle coefficients when differentiating power functions.

Product Rule Application

A more complex example involving the product rule is presented, showing how to differentiate the product of two functions.

Example: Find the derivative of f(x) = (x² + 1) × √x

Solution: f'(x) = (2x × √x) + (x² + 1) × (1/(2√x)) = 2x√x + (x² + 1)/(2√x)

This problem illustrates the step-by-step application of the product rule and the importance of careful algebraic manipulation.

Quotient Rule Demonstration

The page includes an example of using the quotient rule to differentiate a rational function.

Example: Find the derivative of f(x) = (2x - 3)/(3x + 1)

Solution: f'(x) = ((3x + 1) × 2 - (2x - 3) × 3) / (3x + 1)² = (6x + 2 - 6x + 9) / (3x + 1)² = 11 / (3x + 1)²

This example showcases the application of the quotient rule and the subsequent algebraic simplification.

Chain Rule Application

The final example on this page demonstrates the use of the chain rule for composite functions.

Example: Find the derivative of f(x) = √(3x + 1)

Solution: f'(x) = 1/(2√(3x + 1)) × 3 = 3/(2√(3x + 1))

This problem illustrates how to handle nested functions using the chain rule, a crucial skill for advanced calculus problems.

tableau
O
COS X 1
Sin ac
O
2
l'angle au centre
Un radian note rad est la mesure de l'angle
qui intercepe un arc de longueur 1 sur le cercle

Voir

Advanced Derivative Techniques and Formula Summary

This final page provides a comprehensive summary of advanced derivative techniques and formulas, serving as a quick reference guide for students.

Derivative of Inverse Functions

The page begins by explaining the concept of derivatives for inverse functions, which is crucial for understanding more complex trigonometric and logarithmic derivatives.

Highlight: The derivative of an inverse function f^(-1)(x) is given by 1 / f'(f^(-1)(x)).

Trigonometric Function Derivatives

A table of derivatives for common trigonometric functions is presented, including sine, cosine, tangent, and their inverses.

Example: The derivative of sin(x) is cos(x), while the derivative of cos(x) is -sin(x).

These formulas are essential for solving problems in physics, engineering, and other applied sciences.

Exponential and Logarithmic Derivatives

The page covers the derivatives of exponential and logarithmic functions, which are fundamental in modeling growth and decay processes.

Vocabulary: The natural exponential function e^x has the unique property that its derivative is itself.

Implicit Differentiation

An introduction to implicit differentiation is provided, explaining its importance in dealing with equations that cannot be easily solved for y in terms of x.

Definition: Implicit differentiation involves differentiating both sides of an equation with respect to x, treating y as a function of x.

This technique is particularly useful in finding derivatives of inverse trigonometric functions and solving related rates problems.

Summary of Key Derivative Formulas

The page concludes with a comprehensive summary of all the derivative formulas covered in the guide, organized by function type and complexity.

Highlight: This summary includes derivatives of polynomial, trigonometric, exponential, logarithmic, and composite functions, as well as rules for sums, products, quotients, and chains.

This final section serves as a valuable quick reference for students when solving complex derivative problems or preparing for exams.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

17 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 17 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.

Cours et Exercices Trigonométrie et Dérivation 1ère S PDF

user profile picture

𝔸𝕄𝔹ℝ𝔼💐

@ambrevousaide

·

20 Abonnés

Suivre

This comprehensive guide covers trigonometry and derivatives for first-year high school students. It includes key formulas, examples, and step-by-step solutions to help students master these essential mathematical concepts.

Key topics covered:

  • Trigonometric functions and their properties
  • Radian measure and angle conversions
  • Derivative rules and applications
  • Derivatives of common functions
  • Derivative operations on functions

The guide provides clear explanations, visual aids, and practical examples to reinforce understanding and problem-solving skills in trigonometry and calculus.

...

22/02/2023

548

 

1ère

 

Maths

16

tableau
O
COS X 1
Sin ac
O
2
l'angle au centre
Un radian note rad est la mesure de l'angle
qui intercepe un arc de longueur 1 sur le cercle

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Derivatives: Fundamental Concepts and Rules

This page delves into the core concepts of derivatives, presenting a comprehensive overview of derivative rules for various functions and operations.

Basic Derivative Rules

The page begins with a table of derivative rules for common functions, providing a quick reference for students. These rules form the foundation for more complex derivative calculations.

Highlight: Key derivative rules include:

  • Constant function: f(x) = c, f'(x) = 0
  • Linear function: f(x) = ax + b, f'(x) = a
  • Power function: f(x) = x^n, f'(x) = nx^(n-1)
  • Square root function: f(x) = √x, f'(x) = 1/(2√x)

Derivative Operations on Functions

The guide then explores how derivatives behave under various operations, such as addition, multiplication, and composition of functions.

Example: For the sum of functions (u + v), the derivative is u' + v'.

For the product of functions (u × v), the derivative is u'v + uv'.

These rules are essential for tackling more complex functions and real-world applications of calculus.

Special Derivative Rules

The page also covers some special derivative rules, including the chain rule and the quotient rule.

Vocabulary: The chain rule is used for composite functions, while the quotient rule is applied to ratios of functions.

Understanding these rules allows students to differentiate a wide range of functions encountered in advanced mathematics and physics.

Practical Applications

The importance of derivatives in various fields is emphasized, highlighting their role in optimization, rate of change problems, and physics applications.

Highlight: Derivatives are crucial in fields such as economics (marginal analysis), physics (velocity and acceleration), and engineering (optimization problems).

This page provides a solid foundation for students to tackle more advanced derivative problems and applications in subsequent lessons.

tableau
O
COS X 1
Sin ac
O
2
l'angle au centre
Un radian note rad est la mesure de l'angle
qui intercepe un arc de longueur 1 sur le cercle

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Derivative Examples and Problem-Solving Techniques

This page focuses on applying derivative rules to solve various types of problems, providing step-by-step examples to reinforce understanding.

Sum and Difference Rule Example

The page begins with an example demonstrating the application of the sum rule for derivatives.

Example: Find the derivative of f(x) = x² + √x

Solution: f'(x) = 2x + 1/(2√x)

This example illustrates how to break down a function into its components and apply the appropriate derivative rules.

Constant Multiple Rule Example

The guide then shows how to use the constant multiple rule in conjunction with other derivative rules.

Example: Find the derivative of f(x) = 5x³

Solution: f'(x) = 5 × 3x² = 15x²

This example demonstrates how to handle coefficients when differentiating power functions.

Product Rule Application

A more complex example involving the product rule is presented, showing how to differentiate the product of two functions.

Example: Find the derivative of f(x) = (x² + 1) × √x

Solution: f'(x) = (2x × √x) + (x² + 1) × (1/(2√x)) = 2x√x + (x² + 1)/(2√x)

This problem illustrates the step-by-step application of the product rule and the importance of careful algebraic manipulation.

Quotient Rule Demonstration

The page includes an example of using the quotient rule to differentiate a rational function.

Example: Find the derivative of f(x) = (2x - 3)/(3x + 1)

Solution: f'(x) = ((3x + 1) × 2 - (2x - 3) × 3) / (3x + 1)² = (6x + 2 - 6x + 9) / (3x + 1)² = 11 / (3x + 1)²

This example showcases the application of the quotient rule and the subsequent algebraic simplification.

Chain Rule Application

The final example on this page demonstrates the use of the chain rule for composite functions.

Example: Find the derivative of f(x) = √(3x + 1)

Solution: f'(x) = 1/(2√(3x + 1)) × 3 = 3/(2√(3x + 1))

This problem illustrates how to handle nested functions using the chain rule, a crucial skill for advanced calculus problems.

tableau
O
COS X 1
Sin ac
O
2
l'angle au centre
Un radian note rad est la mesure de l'angle
qui intercepe un arc de longueur 1 sur le cercle

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Advanced Derivative Techniques and Formula Summary

This final page provides a comprehensive summary of advanced derivative techniques and formulas, serving as a quick reference guide for students.

Derivative of Inverse Functions

The page begins by explaining the concept of derivatives for inverse functions, which is crucial for understanding more complex trigonometric and logarithmic derivatives.

Highlight: The derivative of an inverse function f^(-1)(x) is given by 1 / f'(f^(-1)(x)).

Trigonometric Function Derivatives

A table of derivatives for common trigonometric functions is presented, including sine, cosine, tangent, and their inverses.

Example: The derivative of sin(x) is cos(x), while the derivative of cos(x) is -sin(x).

These formulas are essential for solving problems in physics, engineering, and other applied sciences.

Exponential and Logarithmic Derivatives

The page covers the derivatives of exponential and logarithmic functions, which are fundamental in modeling growth and decay processes.

Vocabulary: The natural exponential function e^x has the unique property that its derivative is itself.

Implicit Differentiation

An introduction to implicit differentiation is provided, explaining its importance in dealing with equations that cannot be easily solved for y in terms of x.

Definition: Implicit differentiation involves differentiating both sides of an equation with respect to x, treating y as a function of x.

This technique is particularly useful in finding derivatives of inverse trigonometric functions and solving related rates problems.

Summary of Key Derivative Formulas

The page concludes with a comprehensive summary of all the derivative formulas covered in the guide, organized by function type and complexity.

Highlight: This summary includes derivatives of polynomial, trigonometric, exponential, logarithmic, and composite functions, as well as rules for sums, products, quotients, and chains.

This final section serves as a valuable quick reference for students when solving complex derivative problems or preparing for exams.

tableau
O
COS X 1
Sin ac
O
2
l'angle au centre
Un radian note rad est la mesure de l'angle
qui intercepe un arc de longueur 1 sur le cercle

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Trigonometry Fundamentals and Angle Measurements

This page introduces fundamental concepts in trigonometry, focusing on the unit circle, angle measurements, and key trigonometric functions.

Unit Circle and Radian Measure

The unit circle is a crucial tool in trigonometry, representing angles and their corresponding trigonometric values. The page explains the concept of radian measure, which is essential for advanced trigonometry and calculus.

Definition: A radian is the measure of an angle that intercepts an arc length of 1 on the unit circle.

The relationship between degrees and radians is explored, emphasizing the proportional nature of angle measurements.

Trigonometric Functions on the Unit Circle

The page presents a comprehensive table of sine and cosine values for common angles in both degrees and radians. This information is vital for solving trigonometric problems and understanding periodic behavior.

Highlight: The values of sine and cosine for angles 0°, 30°, 45°, 60°, 90°, 120°, and 360° are provided, along with their radian equivalents.

Fundamental Trigonometric Identity

One of the most important trigonometric identities is introduced:

Example: For any real number x, cos²(x) + sin²(x) = 1

This identity is crucial for simplifying trigonometric expressions and solving equations.

Practical Application

The page concludes with a practical example demonstrating how to use the fundamental identity to find the sine of an angle when given its cosine value.

Example: Given cos(x) = -0.8 and π/2 < x < π, find sin(x).

Solution: Using cos²(x) + sin²(x) = 1, we can calculate sin(x) = √(1 - cos²(x)) = √(1 - (-0.8)²) = 0.6

This example illustrates the practical application of trigonometric identities and the importance of understanding angle quadrants.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

17 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 17 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.