Matières

Matières

Plus

Découvre l'Atténuation Sonore et l'Effet Doppler : Formules et Exercices Corrigés

Voir

Découvre l'Atténuation Sonore et l'Effet Doppler : Formules et Exercices Corrigés
user profile picture

emilie aubert

@emilieaubert_ibje

·

17 Abonnés

Suivre

The document provides a comprehensive overview of sound physics, covering key concepts such as sound intensity, sound level, geometric attenuation, and the Doppler effect. It explains formulas for calculating sound intensity and level, discusses attenuation due to geometric spreading and absorption, and introduces the Doppler effect with its relevant equations.

Key points:

  • Sound is a longitudinal mechanical wave that propagates by transporting energy
  • Formulas for sound intensity and sound level are presented
  • Geometric attenuation and absorption attenuation are explained
  • The Doppler effect is introduced with its formula and applications

15/03/2023

118

LE SON
INTENSITE SONORE
le som est une ondo mécanique longitudina
se propage on transpontant de l'energie
qui
•I:
ela
NIVEAU SONORE
• L = 10

Voir

Geometric Attenuation and Doppler Effect

This page delves into more advanced topics in acoustics, specifically geometric attenuation and the Doppler effect. It provides formulas and explanations for these phenomena, which are essential in understanding how sound behaves in different scenarios.

The section on geometric attenuation begins with the formula:

Formula: A = L_proche - L_éloigné

Where:

  • A is the attenuation
  • L_proche is the sound level near the source
  • L_éloigné is the sound level at a distance

This is followed by a more detailed formula:

Formula: A = 10 × log(4πd₁² / 4πd₂²) = 20 × log(d₂ / d₁)

This formula demonstrates how sound intensity decreases with distance due to the spreading of sound waves over a larger area.

Highlight: Geometric attenuation is a crucial concept in understanding how sound levels change with distance from the source.

The page then introduces attenuation by absorption:

Formula: A = L_incident - L_transmit

Where:

  • L_incident is the sound level of the incident sound
  • L_transmit is the sound level of the transmitted sound

This concept is important for understanding how sound is affected when passing through different materials.

The final section of the page covers the Doppler effect, a phenomenon where the observed frequency of a sound changes when the source and observer are in relative motion. The formula for the Doppler effect is presented:

Formula: Δf = f_r - f_e = (v ± v_r / c ± v_s) × f_e - f_e

Where:

  • Δf is the change in frequency
  • f_r is the received frequency
  • f_e is the emitted frequency
  • v is the speed of sound
  • v_r is the speed of the receiver
  • v_s is the speed of the source

Example: The Doppler effect explains why the pitch of a siren changes as an ambulance passes by an observer.

The page concludes with a reminder of basic wave equations:

Formula: c = λf and T = 1/f

Where:

  • c is the speed of sound
  • λ is the wavelength
  • f is the frequency
  • T is the period

These equations are fundamental in understanding wave propagation and are essential for calculations involving the Doppler effect.

Highlight: The Doppler effect has numerous practical applications, including radar systems, medical ultrasound, and the study of astronomical objects.

LE SON
INTENSITE SONORE
le som est une ondo mécanique longitudina
se propage on transpontant de l'energie
qui
•I:
ela
NIVEAU SONORE
• L = 10

Voir

Sound Intensity and Sound Level

This page introduces fundamental concepts in sound physics, focusing on sound intensity and sound level. It provides essential formulas and definitions for understanding how sound propagates and is measured.

The document begins by defining sound as a longitudinal mechanical wave that propagates by transporting energy. This sets the foundation for understanding more complex acoustic phenomena.

Definition: Sound is a longitudinal mechanical wave that propagates by transporting energy.

The page then presents the formula for sound intensity:

Formula: I = P / S

Where:

  • I is the sound intensity (W/m²)
  • P is the sound power (W)
  • S is the surface area (m²)

This formula is crucial for understanding how sound energy is distributed over an area.

Next, the document introduces the concept of sound level and provides its formula:

Formula: L = 10 × log(I / I₀)

Where:

  • L is the sound level (dB)
  • I is the sound intensity (W/m²)
  • I₀ is the threshold of audibility (10⁻¹² W/m²)

This logarithmic scale is essential for representing the wide range of sound intensities that humans can perceive.

The page also includes the inverse formula to calculate intensity from sound level:

Formula: I = I₀ × 10^(L/10)

These formulas are fundamental in acoustics and are widely used in various applications, from environmental noise assessment to audio engineering.

Highlight: Understanding the relationship between sound intensity and sound level is crucial for analyzing and measuring acoustic phenomena in various fields.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

13 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.

Découvre l'Atténuation Sonore et l'Effet Doppler : Formules et Exercices Corrigés

user profile picture

emilie aubert

@emilieaubert_ibje

·

17 Abonnés

Suivre

The document provides a comprehensive overview of sound physics, covering key concepts such as sound intensity, sound level, geometric attenuation, and the Doppler effect. It explains formulas for calculating sound intensity and level, discusses attenuation due to geometric spreading and absorption, and introduces the Doppler effect with its relevant equations.

Key points:

  • Sound is a longitudinal mechanical wave that propagates by transporting energy
  • Formulas for sound intensity and sound level are presented
  • Geometric attenuation and absorption attenuation are explained
  • The Doppler effect is introduced with its formula and applications

15/03/2023

118

 

Tle

 

Physique/Chimie

4

LE SON
INTENSITE SONORE
le som est une ondo mécanique longitudina
se propage on transpontant de l'energie
qui
•I:
ela
NIVEAU SONORE
• L = 10

Geometric Attenuation and Doppler Effect

This page delves into more advanced topics in acoustics, specifically geometric attenuation and the Doppler effect. It provides formulas and explanations for these phenomena, which are essential in understanding how sound behaves in different scenarios.

The section on geometric attenuation begins with the formula:

Formula: A = L_proche - L_éloigné

Where:

  • A is the attenuation
  • L_proche is the sound level near the source
  • L_éloigné is the sound level at a distance

This is followed by a more detailed formula:

Formula: A = 10 × log(4πd₁² / 4πd₂²) = 20 × log(d₂ / d₁)

This formula demonstrates how sound intensity decreases with distance due to the spreading of sound waves over a larger area.

Highlight: Geometric attenuation is a crucial concept in understanding how sound levels change with distance from the source.

The page then introduces attenuation by absorption:

Formula: A = L_incident - L_transmit

Where:

  • L_incident is the sound level of the incident sound
  • L_transmit is the sound level of the transmitted sound

This concept is important for understanding how sound is affected when passing through different materials.

The final section of the page covers the Doppler effect, a phenomenon where the observed frequency of a sound changes when the source and observer are in relative motion. The formula for the Doppler effect is presented:

Formula: Δf = f_r - f_e = (v ± v_r / c ± v_s) × f_e - f_e

Where:

  • Δf is the change in frequency
  • f_r is the received frequency
  • f_e is the emitted frequency
  • v is the speed of sound
  • v_r is the speed of the receiver
  • v_s is the speed of the source

Example: The Doppler effect explains why the pitch of a siren changes as an ambulance passes by an observer.

The page concludes with a reminder of basic wave equations:

Formula: c = λf and T = 1/f

Where:

  • c is the speed of sound
  • λ is the wavelength
  • f is the frequency
  • T is the period

These equations are fundamental in understanding wave propagation and are essential for calculations involving the Doppler effect.

Highlight: The Doppler effect has numerous practical applications, including radar systems, medical ultrasound, and the study of astronomical objects.

LE SON
INTENSITE SONORE
le som est une ondo mécanique longitudina
se propage on transpontant de l'energie
qui
•I:
ela
NIVEAU SONORE
• L = 10

Sound Intensity and Sound Level

This page introduces fundamental concepts in sound physics, focusing on sound intensity and sound level. It provides essential formulas and definitions for understanding how sound propagates and is measured.

The document begins by defining sound as a longitudinal mechanical wave that propagates by transporting energy. This sets the foundation for understanding more complex acoustic phenomena.

Definition: Sound is a longitudinal mechanical wave that propagates by transporting energy.

The page then presents the formula for sound intensity:

Formula: I = P / S

Where:

  • I is the sound intensity (W/m²)
  • P is the sound power (W)
  • S is the surface area (m²)

This formula is crucial for understanding how sound energy is distributed over an area.

Next, the document introduces the concept of sound level and provides its formula:

Formula: L = 10 × log(I / I₀)

Where:

  • L is the sound level (dB)
  • I is the sound intensity (W/m²)
  • I₀ is the threshold of audibility (10⁻¹² W/m²)

This logarithmic scale is essential for representing the wide range of sound intensities that humans can perceive.

The page also includes the inverse formula to calculate intensity from sound level:

Formula: I = I₀ × 10^(L/10)

These formulas are fundamental in acoustics and are widely used in various applications, from environmental noise assessment to audio engineering.

Highlight: Understanding the relationship between sound intensity and sound level is crucial for analyzing and measuring acoustic phenomena in various fields.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

13 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.