Matières

Matières

Plus

Guide Rigolo: Formules et Exercices de Factorisation et Développement en PDF pour les Curieux de 3ème

Voir

Guide Rigolo: Formules et Exercices de Factorisation et Développement en PDF pour les Curieux de 3ème
user profile picture

Amandine

@amandine_gcel

·

39 Abonnés

Suivre

Expert en la matière

The development and factorization of algebraic expressions are fundamental concepts in mathematics, particularly in algebra. This guide covers key formulas and techniques for both processes, along with examples of their application in solving equations and graphing functions.

Développement (expansion) involves distributing terms and simplifying expressions
Factorisation (factoring) is the reverse process, breaking down expressions into simpler factors
• The guide also covers linear functions, including graphing and calculating slopes and y-intercepts
• Examples demonstrate how to apply these concepts to solve various mathematical problems

31/01/2023

596

Isqui
-Développement
k (a + b) = ka + kb
k (a-b)-ka-kb
(a+b) (c+d) = ac + ad + bc +bd
(a + b)² = a² + 2ab + b²
(a - b)²=a² - 2ab + b²
(a+b)(

Voir

Applying Linear Functions and Algebraic Techniques

This page focuses on practical applications of linear functions and algebraic techniques, including calculating function values, determining parameters, and finding antecedents.

Calculating Function Values: For the function P(x) = 3x + 2, we can calculate P(-1): P(-1) = 3(-1) + 2 = -3 + 2 = -1

Determining Function Parameters: Given P(x) = 5x + p and P(-2) = 3, we can find p: 5(-2) + p = 3 -10 + p = 3 p = 13 Therefore, P(x) = 5x + 13

Example: For the function P(x) = mx - 3, if P(4) = 12, we can determine m: mx4 - 3 = 12 4m = 15 m = 15/4 = 3.75 Thus, P(x) = 3.75x - 3

Finding Antecedents: To find the antecedent of -1 for f(x) = -1/5x + 2: -1/5x + 2 = -1 -1/5x = -3 x = 15

Highlight: The antecedent is the input value (x) that produces a specific output value for a given function.

Determining a Linear Function from Two Points: To find the function f(x) such that f(-6) = 5 and f(3) = -1: m = (f(3) - f(-6)) / (3 - (-6)) = (-1 - 5) / 9 = -2/3 Using the point-slope form: f(x) = -2/3x + b Substituting f(-6) = 5: 5 = -2/3(-6) + b 5 = 4 + b b = 1 Therefore, f(x) = -2/3x + 1

Vocabulary: The slope formula used here is (y₂ - y₁) / (x₂ - x₁), where (x₁, y₁) and (x₂, y₂) are two points on the line.

The page concludes with additional calculations and formulas related to linear functions and slopes, reinforcing the practical application of these factorisation formule and development techniques in solving algebraic problems.

Isqui
-Développement
k (a + b) = ka + kb
k (a-b)-ka-kb
(a+b) (c+d) = ac + ad + bc +bd
(a + b)² = a² + 2ab + b²
(a - b)²=a² - 2ab + b²
(a+b)(

Voir

Development and Factorization Formulas

This page presents essential formulas for développement (expansion) and factorisation (factoring) in algebra. These formulas are crucial for simplifying and manipulating algebraic expressions.

Development Formulas:

  1. Distributive property: k(a + b) = ka + kb and k(a - b) = ka - kb
  2. Product of binomials: (a + b)(c + d) = ac + ad + bc + bd
  3. Square of a sum: (a + b)² = a² + 2ab + b²
  4. Square of a difference: (a - b)² = a² - 2ab + b²
  5. Difference of squares: (a + b)(a - b) = a² - b²

Factorization Formulas:

  1. Common factor: ab + ac = a(b + c)
  2. Difference of terms: ab - ac = a(b - c)
  3. Perfect square trinomial (sum): a² + 2ab + b² = (a + b)²
  4. Perfect square trinomial (difference): a² - 2ab + b² = (a - b)²
  5. Difference of squares: a² - b² = (a + b)(a - b)

Highlight: Memorizing these formulas will greatly enhance your ability to manipulate algebraic expressions efficiently.

The page also includes a graph illustrating a linear function, which is described by the general form f(x) = mx + p, where m is the slope and p is the y-intercept.

Example: For the function f(x) = x - 2, the slope (m) is 1, and the y-intercept (p) is -2.

Another function, g(x) = 2x + 3, is also mentioned, demonstrating how different values of m and p affect the graph of a linear function.

Vocabulary: In the context of linear functions, 'm' represents the slope, which indicates the steepness and direction of the line, while 'p' represents the y-intercept, the point where the line crosses the y-axis.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

15 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.

Guide Rigolo: Formules et Exercices de Factorisation et Développement en PDF pour les Curieux de 3ème

user profile picture

Amandine

@amandine_gcel

·

39 Abonnés

Suivre

Expert en la matière

The development and factorization of algebraic expressions are fundamental concepts in mathematics, particularly in algebra. This guide covers key formulas and techniques for both processes, along with examples of their application in solving equations and graphing functions.

Développement (expansion) involves distributing terms and simplifying expressions
Factorisation (factoring) is the reverse process, breaking down expressions into simpler factors
• The guide also covers linear functions, including graphing and calculating slopes and y-intercepts
• Examples demonstrate how to apply these concepts to solve various mathematical problems

31/01/2023

596

 

3e

 

Maths

10

Isqui
-Développement
k (a + b) = ka + kb
k (a-b)-ka-kb
(a+b) (c+d) = ac + ad + bc +bd
(a + b)² = a² + 2ab + b²
(a - b)²=a² - 2ab + b²
(a+b)(

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Applying Linear Functions and Algebraic Techniques

This page focuses on practical applications of linear functions and algebraic techniques, including calculating function values, determining parameters, and finding antecedents.

Calculating Function Values: For the function P(x) = 3x + 2, we can calculate P(-1): P(-1) = 3(-1) + 2 = -3 + 2 = -1

Determining Function Parameters: Given P(x) = 5x + p and P(-2) = 3, we can find p: 5(-2) + p = 3 -10 + p = 3 p = 13 Therefore, P(x) = 5x + 13

Example: For the function P(x) = mx - 3, if P(4) = 12, we can determine m: mx4 - 3 = 12 4m = 15 m = 15/4 = 3.75 Thus, P(x) = 3.75x - 3

Finding Antecedents: To find the antecedent of -1 for f(x) = -1/5x + 2: -1/5x + 2 = -1 -1/5x = -3 x = 15

Highlight: The antecedent is the input value (x) that produces a specific output value for a given function.

Determining a Linear Function from Two Points: To find the function f(x) such that f(-6) = 5 and f(3) = -1: m = (f(3) - f(-6)) / (3 - (-6)) = (-1 - 5) / 9 = -2/3 Using the point-slope form: f(x) = -2/3x + b Substituting f(-6) = 5: 5 = -2/3(-6) + b 5 = 4 + b b = 1 Therefore, f(x) = -2/3x + 1

Vocabulary: The slope formula used here is (y₂ - y₁) / (x₂ - x₁), where (x₁, y₁) and (x₂, y₂) are two points on the line.

The page concludes with additional calculations and formulas related to linear functions and slopes, reinforcing the practical application of these factorisation formule and development techniques in solving algebraic problems.

Isqui
-Développement
k (a + b) = ka + kb
k (a-b)-ka-kb
(a+b) (c+d) = ac + ad + bc +bd
(a + b)² = a² + 2ab + b²
(a - b)²=a² - 2ab + b²
(a+b)(

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Development and Factorization Formulas

This page presents essential formulas for développement (expansion) and factorisation (factoring) in algebra. These formulas are crucial for simplifying and manipulating algebraic expressions.

Development Formulas:

  1. Distributive property: k(a + b) = ka + kb and k(a - b) = ka - kb
  2. Product of binomials: (a + b)(c + d) = ac + ad + bc + bd
  3. Square of a sum: (a + b)² = a² + 2ab + b²
  4. Square of a difference: (a - b)² = a² - 2ab + b²
  5. Difference of squares: (a + b)(a - b) = a² - b²

Factorization Formulas:

  1. Common factor: ab + ac = a(b + c)
  2. Difference of terms: ab - ac = a(b - c)
  3. Perfect square trinomial (sum): a² + 2ab + b² = (a + b)²
  4. Perfect square trinomial (difference): a² - 2ab + b² = (a - b)²
  5. Difference of squares: a² - b² = (a + b)(a - b)

Highlight: Memorizing these formulas will greatly enhance your ability to manipulate algebraic expressions efficiently.

The page also includes a graph illustrating a linear function, which is described by the general form f(x) = mx + p, where m is the slope and p is the y-intercept.

Example: For the function f(x) = x - 2, the slope (m) is 1, and the y-intercept (p) is -2.

Another function, g(x) = 2x + 3, is also mentioned, demonstrating how different values of m and p affect the graph of a linear function.

Vocabulary: In the context of linear functions, 'm' represents the slope, which indicates the steepness and direction of the line, while 'p' represents the y-intercept, the point where the line crosses the y-axis.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

15 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.