Matières

Matières

Plus

Cours et Exercices sur le Mouvement des Satellites et des Planètes - Terminale S PDF

Voir

Cours et Exercices sur le Mouvement des Satellites et des Planètes - Terminale S PDF

The satellite motion and planetary laws in physics are explored in this comprehensive guide for Terminale S students. It covers Newton's laws, Kepler's laws, and satellite orbits, providing essential formulas and demonstrations.

• The document explains the uniform motion of satellites and the calculation of their orbital period.
• It demonstrates the 3rd law of Kepler and its relation to satellite motion.
• The guide also touches on the velocity differences at apogee and perigee in elliptical orbits.
• Key concepts like acceleration, velocity, and orbital radius are defined and used in calculations.
• The material is suitable for advanced high school physics students preparing for exams or further studies in astrophysics.

19/12/2021

241

Terminale
Applications
Connaitre
-
Accélération
1
●
.
2nd loi de Newton
-
ΣΕ
●
●
ext
FTIISS ma:
=
à
GM →
n
R²
Vitesse uniforme (à montrer)
-

Voir

Kepler's Laws and Orbital Velocities

This page delves deeper into orbital mechanics, focusing on Kepler's laws and their application to satellite motion. It begins with a demonstration of Kepler's third law, which relates the orbital period to the orbital radius.

The demonstration starts with the basic equation for orbital period:

Formula: T = 2πR / v

Through a series of algebraic manipulations and substitutions using the equations from the previous page, the guide arrives at the famous form of Kepler's third law:

Formula: T² = (4π²/GM) * R³

This relationship shows that the square of the orbital period is proportional to the cube of the orbital radius, a fundamental principle in celestial mechanics.

Highlight: Kepler's third law is crucial for understanding the relationship between a satellite's distance from Earth and its orbital period, which has practical applications in satellite deployment and management.

The page then transitions to a discussion of Kepler's second law, also known as the law of equal areas. This law states that a line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.

The guide applies this concept to satellite motion, explaining how it relates to the velocity of the satellite at different points in its orbit, particularly at the apogee (farthest point) and perigee (closest point).

Definition: Apogee - The point in an elliptical orbit that is farthest from the central body. Definition: Perigee - The point in an elliptical orbit that is closest to the central body.

The document concludes by noting that the velocity at perigee is greater than the velocity at apogee, a direct consequence of Kepler's second law and the conservation of angular momentum.

Example: In an elliptical orbit, a satellite moves faster when it's closer to Earth (at perigee) and slower when it's farther away (at apogee).

This comprehensive coverage of Kepler's laws and their application to satellite motion provides students with a solid foundation for understanding orbital dynamics and its practical implications in space exploration and satellite technology.

Terminale
Applications
Connaitre
-
Accélération
1
●
.
2nd loi de Newton
-
ΣΕ
●
●
ext
FTIISS ma:
=
à
GM →
n
R²
Vitesse uniforme (à montrer)
-

Voir

Satellite Motion and Kepler's Laws

This page introduces fundamental concepts related to satellite motion around the Earth and the application of Newton's second law to orbital mechanics. It begins with a focus on acceleration and its components in satellite motion.

The document explains that for a satellite in orbit, the centripetal acceleration is provided by the gravitational force. This is expressed mathematically using Newton's second law and the universal law of gravitation:

Formula: ΣF_ext = ma = (GM/R²)n

Where G is the gravitational constant, M is the mass of the Earth, m is the mass of the satellite, and R is the orbital radius.

The guide then proceeds to demonstrate that the movement of the satellite is uniform. This is done by analyzing the acceleration in the Frenet frame, showing that the tangential component of acceleration is zero, which implies constant speed.

Highlight: The uniform motion of a satellite is a crucial concept in understanding orbital mechanics and is a direct consequence of the balance between gravitational force and centripetal acceleration.

The page concludes with the introduction of the concept of orbital period T, which is the time taken for one complete revolution. This sets the stage for the discussion of Kepler's laws in the following section.

Vocabulary: Orbital period - The time taken by a satellite to complete one full revolution around its central body.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

15 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.

Cours et Exercices sur le Mouvement des Satellites et des Planètes - Terminale S PDF

The satellite motion and planetary laws in physics are explored in this comprehensive guide for Terminale S students. It covers Newton's laws, Kepler's laws, and satellite orbits, providing essential formulas and demonstrations.

• The document explains the uniform motion of satellites and the calculation of their orbital period.
• It demonstrates the 3rd law of Kepler and its relation to satellite motion.
• The guide also touches on the velocity differences at apogee and perigee in elliptical orbits.
• Key concepts like acceleration, velocity, and orbital radius are defined and used in calculations.
• The material is suitable for advanced high school physics students preparing for exams or further studies in astrophysics.

19/12/2021

241

 

Tle

 

Physique/Chimie

13

Terminale
Applications
Connaitre
-
Accélération
1
●
.
2nd loi de Newton
-
ΣΕ
●
●
ext
FTIISS ma:
=
à
GM →
n
R²
Vitesse uniforme (à montrer)
-

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Kepler's Laws and Orbital Velocities

This page delves deeper into orbital mechanics, focusing on Kepler's laws and their application to satellite motion. It begins with a demonstration of Kepler's third law, which relates the orbital period to the orbital radius.

The demonstration starts with the basic equation for orbital period:

Formula: T = 2πR / v

Through a series of algebraic manipulations and substitutions using the equations from the previous page, the guide arrives at the famous form of Kepler's third law:

Formula: T² = (4π²/GM) * R³

This relationship shows that the square of the orbital period is proportional to the cube of the orbital radius, a fundamental principle in celestial mechanics.

Highlight: Kepler's third law is crucial for understanding the relationship between a satellite's distance from Earth and its orbital period, which has practical applications in satellite deployment and management.

The page then transitions to a discussion of Kepler's second law, also known as the law of equal areas. This law states that a line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.

The guide applies this concept to satellite motion, explaining how it relates to the velocity of the satellite at different points in its orbit, particularly at the apogee (farthest point) and perigee (closest point).

Definition: Apogee - The point in an elliptical orbit that is farthest from the central body. Definition: Perigee - The point in an elliptical orbit that is closest to the central body.

The document concludes by noting that the velocity at perigee is greater than the velocity at apogee, a direct consequence of Kepler's second law and the conservation of angular momentum.

Example: In an elliptical orbit, a satellite moves faster when it's closer to Earth (at perigee) and slower when it's farther away (at apogee).

This comprehensive coverage of Kepler's laws and their application to satellite motion provides students with a solid foundation for understanding orbital dynamics and its practical implications in space exploration and satellite technology.

Terminale
Applications
Connaitre
-
Accélération
1
●
.
2nd loi de Newton
-
ΣΕ
●
●
ext
FTIISS ma:
=
à
GM →
n
R²
Vitesse uniforme (à montrer)
-

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Satellite Motion and Kepler's Laws

This page introduces fundamental concepts related to satellite motion around the Earth and the application of Newton's second law to orbital mechanics. It begins with a focus on acceleration and its components in satellite motion.

The document explains that for a satellite in orbit, the centripetal acceleration is provided by the gravitational force. This is expressed mathematically using Newton's second law and the universal law of gravitation:

Formula: ΣF_ext = ma = (GM/R²)n

Where G is the gravitational constant, M is the mass of the Earth, m is the mass of the satellite, and R is the orbital radius.

The guide then proceeds to demonstrate that the movement of the satellite is uniform. This is done by analyzing the acceleration in the Frenet frame, showing that the tangential component of acceleration is zero, which implies constant speed.

Highlight: The uniform motion of a satellite is a crucial concept in understanding orbital mechanics and is a direct consequence of the balance between gravitational force and centripetal acceleration.

The page concludes with the introduction of the concept of orbital period T, which is the time taken for one complete revolution. This sets the stage for the discussion of Kepler's laws in the following section.

Vocabulary: Orbital period - The time taken by a satellite to complete one full revolution around its central body.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

15 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.