Matières

Matières

Plus

Découvre la Loi de Beer-Lambert avec des Exercices Amusants

Voir

Découvre la Loi de Beer-Lambert avec des Exercices Amusants

The Loi de Beer-Lambert is a fundamental principle in spectrophotometry that relates the absorption of light to the properties of the material through which the light is traveling. This law is crucial for determining the concentration of solutions using spectrophotometric measurements. The document covers key aspects of the Beer-Lambert law, including its formula, applications in color analysis, and the creation of calibration curves for concentration determination.

• The law is expressed as A = kC, where A is absorbance, k is a constant, and C is concentration.
• It can also be written as A = ε × l × C, where ε is the molar extinction coefficient and l is the path length.
• The law is applied in analyzing solution colors, creating calibration curves, and calculating concentrations.
• Practical applications include dilution series preparation and graphical analysis of absorbance vs. concentration.

18/12/2021

737

Terminale
SPC
Beer Lambert et dosage par photométrie
Sujet général
- Loi de Beer Lambert
• A =kC
• A = Σ×ix C avec k = ΣΧΙ
- Absorbance
1
●

Voir

Calibration Curves and Solution Preparation

The second page focuses on the practical application of the Loi de Beer-Lambert in creating calibration curves and preparing standard solutions. It explains that if a solution appears a certain color, it absorbs the complementary color of light.

The process of creating a calibration curve is detailed, starting with the preparation of standard solutions through dilution. The page provides a formula for calculating the concentration of diluted solutions: C₀ = x mol · L⁻¹.

Example: A series of standard solutions (S₁, S₂, S₃, S₄, S₅) are prepared by diluting a stock solution, and their absorbances are measured to create a calibration curve.

The concept of the absorption spectrum is introduced, showing how absorbance varies with wavelength and that the maximum absorbance occurs at the wavelength of the complementary color.

Highlight: The linear range of the calibration curve is emphasized, indicating the concentration range where the Loi de Beer-Lambert is valid.

The page concludes with a graphical representation of a calibration curve, plotting absorbance against concentration, which is essential for determining unknown concentrations using the Loi de Beer-Lambert.

Terminale
SPC
Beer Lambert et dosage par photométrie
Sujet général
- Loi de Beer Lambert
• A =kC
• A = Σ×ix C avec k = ΣΧΙ
- Absorbance
1
●

Voir

Practical Applications of Beer-Lambert Law

The third page demonstrates the practical applications of the Loi de Beer-Lambert in determining concentrations and calculating masses of substances in solution. It provides methods for applying the law using both graphical and numerical approaches.

For graphical analysis, the page explains how to read concentrations directly from the calibration curve. For numerical analysis, it presents the formula for calculating the constant k:

k = (Amax - Amin) / (Cmax - Cmin)

Formula: The concentration of an unknown sample can be calculated using C = A₀ / k, where A₀ is the measured absorbance and k is the slope of the calibration curve.

The page also covers how to calculate the mass of a substance present in a solution:

m = n × M = C × V × M

Where C is the concentration obtained from the Beer-Lambert law, V is the volume of the solution, and M is the molar mass of the substance.

Example: If you have determined the concentration C of a solution using the Loi de Beer-Lambert, and you know its volume V and the molar mass M of the dissolved substance, you can calculate the mass m present in the solution.

This final section ties together the theoretical aspects of the Beer-Lambert law with its practical applications in quantitative analysis, demonstrating its importance in fields such as chemistry and biochemistry.

Terminale
SPC
Beer Lambert et dosage par photométrie
Sujet général
- Loi de Beer Lambert
• A =kC
• A = Σ×ix C avec k = ΣΧΙ
- Absorbance
1
●

Voir

Beer-Lambert Law and Photometric Analysis

The first page introduces the fundamental concepts of the Loi de Beer-Lambert and its application in spectrophotometry. The law is presented in its basic form, A = kC, and expanded to A = ε × l × C, where ε represents the molar extinction coefficient and l the path length through the solution.

The relationship between absorbance, intensity, and transmittance is explained, with the formula A = -log(T) provided. The page also delves into the connection between light, color, and absorbance, introducing the concept of complementary colors.

Definition: The Loi de Beer-Lambert states that the absorbance of a solution is directly proportional to its concentration and the path length of light through the sample.

Vocabulary: Coefficient d'extinction molaire (ε) is a measure of how strongly a chemical species absorbs light at a given wavelength.

Highlight: The absorbance (A) is a dimensionless quantity, while the path length (l) is typically measured in centimeters.

The page includes a color wheel diagram illustrating complementary colors, which is crucial for understanding how the color of a solution relates to the wavelengths of light it absorbs.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

15 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.

Découvre la Loi de Beer-Lambert avec des Exercices Amusants

The Loi de Beer-Lambert is a fundamental principle in spectrophotometry that relates the absorption of light to the properties of the material through which the light is traveling. This law is crucial for determining the concentration of solutions using spectrophotometric measurements. The document covers key aspects of the Beer-Lambert law, including its formula, applications in color analysis, and the creation of calibration curves for concentration determination.

• The law is expressed as A = kC, where A is absorbance, k is a constant, and C is concentration.
• It can also be written as A = ε × l × C, where ε is the molar extinction coefficient and l is the path length.
• The law is applied in analyzing solution colors, creating calibration curves, and calculating concentrations.
• Practical applications include dilution series preparation and graphical analysis of absorbance vs. concentration.

18/12/2021

737

 

Tle

 

Physique/Chimie

17

Terminale
SPC
Beer Lambert et dosage par photométrie
Sujet général
- Loi de Beer Lambert
• A =kC
• A = Σ×ix C avec k = ΣΧΙ
- Absorbance
1
●

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Calibration Curves and Solution Preparation

The second page focuses on the practical application of the Loi de Beer-Lambert in creating calibration curves and preparing standard solutions. It explains that if a solution appears a certain color, it absorbs the complementary color of light.

The process of creating a calibration curve is detailed, starting with the preparation of standard solutions through dilution. The page provides a formula for calculating the concentration of diluted solutions: C₀ = x mol · L⁻¹.

Example: A series of standard solutions (S₁, S₂, S₃, S₄, S₅) are prepared by diluting a stock solution, and their absorbances are measured to create a calibration curve.

The concept of the absorption spectrum is introduced, showing how absorbance varies with wavelength and that the maximum absorbance occurs at the wavelength of the complementary color.

Highlight: The linear range of the calibration curve is emphasized, indicating the concentration range where the Loi de Beer-Lambert is valid.

The page concludes with a graphical representation of a calibration curve, plotting absorbance against concentration, which is essential for determining unknown concentrations using the Loi de Beer-Lambert.

Terminale
SPC
Beer Lambert et dosage par photométrie
Sujet général
- Loi de Beer Lambert
• A =kC
• A = Σ×ix C avec k = ΣΧΙ
- Absorbance
1
●

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Practical Applications of Beer-Lambert Law

The third page demonstrates the practical applications of the Loi de Beer-Lambert in determining concentrations and calculating masses of substances in solution. It provides methods for applying the law using both graphical and numerical approaches.

For graphical analysis, the page explains how to read concentrations directly from the calibration curve. For numerical analysis, it presents the formula for calculating the constant k:

k = (Amax - Amin) / (Cmax - Cmin)

Formula: The concentration of an unknown sample can be calculated using C = A₀ / k, where A₀ is the measured absorbance and k is the slope of the calibration curve.

The page also covers how to calculate the mass of a substance present in a solution:

m = n × M = C × V × M

Where C is the concentration obtained from the Beer-Lambert law, V is the volume of the solution, and M is the molar mass of the substance.

Example: If you have determined the concentration C of a solution using the Loi de Beer-Lambert, and you know its volume V and the molar mass M of the dissolved substance, you can calculate the mass m present in the solution.

This final section ties together the theoretical aspects of the Beer-Lambert law with its practical applications in quantitative analysis, demonstrating its importance in fields such as chemistry and biochemistry.

Terminale
SPC
Beer Lambert et dosage par photométrie
Sujet général
- Loi de Beer Lambert
• A =kC
• A = Σ×ix C avec k = ΣΧΙ
- Absorbance
1
●

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Beer-Lambert Law and Photometric Analysis

The first page introduces the fundamental concepts of the Loi de Beer-Lambert and its application in spectrophotometry. The law is presented in its basic form, A = kC, and expanded to A = ε × l × C, where ε represents the molar extinction coefficient and l the path length through the solution.

The relationship between absorbance, intensity, and transmittance is explained, with the formula A = -log(T) provided. The page also delves into the connection between light, color, and absorbance, introducing the concept of complementary colors.

Definition: The Loi de Beer-Lambert states that the absorbance of a solution is directly proportional to its concentration and the path length of light through the sample.

Vocabulary: Coefficient d'extinction molaire (ε) is a measure of how strongly a chemical species absorbs light at a given wavelength.

Highlight: The absorbance (A) is a dimensionless quantity, while the path length (l) is typically measured in centimeters.

The page includes a color wheel diagram illustrating complementary colors, which is crucial for understanding how the color of a solution relates to the wavelengths of light it absorbs.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

15 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.