Matières

Matières

Plus

Apprends les Probabilités Facilement avec des Cartes Mentales

Voir

Apprends les Probabilités Facilement avec des Cartes Mentales

Probability and frequency concepts in mathematics are explored, covering key terms, calculations, and rules. The document outlines fundamental principles of probability theory, including theoretical frequency, event types, and equiprobability.

Probability is defined as a number between 0 and 1, representing the likelihood of an event occurring.
• The concept of theoretical frequency is introduced, emphasizing its relevance when an experiment is repeated many times.
Frequency calculation is explained as the ratio of an event's occurrence to the total number of trials.
• The document distinguishes between impossible events (probability 0) and certain events (probability 1).
• An example of a random experiment, such as rolling a dice, is provided to illustrate probability concepts.
• The notion of equiprobability is mentioned, suggesting equal chances for all possible outcomes in certain scenarios.

02/02/2022

2721

FREQUENCE THEORIQUE SI ON
EFFECTUE L'EXPERIENCE UN GRAND
NOMBRE DE FOIs
CALCULER ONE FREQUENCE:
EFFECTIF
EFFECTIF TOTALE
PROBABILITÉ
REGLES

Voir

Probability and Frequency Fundamentals

This page provides an overview of essential concepts in probability and frequency, crucial for understanding probabilité d'un événement and related topics in mathematics. The content is particularly relevant for students studying carte mentale probabilités 3ème or carte mentale probabilité seconde.

The document begins by introducing the concept of theoretical frequency. This is described as the expected frequency of an event if an experiment is conducted a large number of times. This concept is fundamental in understanding the long-term behavior of random events.

Definition: Theoretical frequency is the expected occurrence rate of an event when an experiment is repeated many times.

Next, the method for calculating frequency is presented. The formula given is:

Frequency = Effectif (Number of occurrences) / Effectif Total (Total number of trials)

This formula is essential for determining the relative occurrence of an event in a given set of trials.

Example: If a coin is flipped 100 times and heads appears 48 times, the frequency of heads would be 48/100 = 0.48.

The document then introduces the concept of probability. It states that probability is always a number between 0 and 1, inclusive. This range is crucial for understanding the likelihood of events occurring.

Highlight: Probability is always represented by a number between 0 and 1, where 0 indicates an impossible event and 1 indicates a certain event.

The concept of a random experiment is introduced, with an example of rolling a die. The possible outcomes (issues) are listed as 1, 2, 3, 4, 5, and 6. An event is then defined as obtaining an even number.

Example: In a die roll, the event "obtaining an even number" includes the outcomes 2, 4, and 6.

The document also mentions the concept of equiprobability, which is crucial in many probability calculations. Equiprobability assumes that all possible outcomes of an experiment are equally likely to occur.

Vocabulary: Equiprobability refers to a situation where all possible outcomes of an experiment have an equal chance of occurring.

Finally, the document emphasizes two extreme cases in probability theory:

  1. Impossible Event: An event with a probability of 0, meaning it will never occur.
  2. Certain Event: An event with a probability of 1, meaning it will always occur.

These concepts form the foundation for more advanced topics in probability theory and statistics, such as those covered in carte mentale probabilité terminale or calcul probabilité successive.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

15 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.

Apprends les Probabilités Facilement avec des Cartes Mentales

Probability and frequency concepts in mathematics are explored, covering key terms, calculations, and rules. The document outlines fundamental principles of probability theory, including theoretical frequency, event types, and equiprobability.

Probability is defined as a number between 0 and 1, representing the likelihood of an event occurring.
• The concept of theoretical frequency is introduced, emphasizing its relevance when an experiment is repeated many times.
Frequency calculation is explained as the ratio of an event's occurrence to the total number of trials.
• The document distinguishes between impossible events (probability 0) and certain events (probability 1).
• An example of a random experiment, such as rolling a dice, is provided to illustrate probability concepts.
• The notion of equiprobability is mentioned, suggesting equal chances for all possible outcomes in certain scenarios.

02/02/2022

2721

 

3e

 

Maths

44

FREQUENCE THEORIQUE SI ON
EFFECTUE L'EXPERIENCE UN GRAND
NOMBRE DE FOIs
CALCULER ONE FREQUENCE:
EFFECTIF
EFFECTIF TOTALE
PROBABILITÉ
REGLES

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Probability and Frequency Fundamentals

This page provides an overview of essential concepts in probability and frequency, crucial for understanding probabilité d'un événement and related topics in mathematics. The content is particularly relevant for students studying carte mentale probabilités 3ème or carte mentale probabilité seconde.

The document begins by introducing the concept of theoretical frequency. This is described as the expected frequency of an event if an experiment is conducted a large number of times. This concept is fundamental in understanding the long-term behavior of random events.

Definition: Theoretical frequency is the expected occurrence rate of an event when an experiment is repeated many times.

Next, the method for calculating frequency is presented. The formula given is:

Frequency = Effectif (Number of occurrences) / Effectif Total (Total number of trials)

This formula is essential for determining the relative occurrence of an event in a given set of trials.

Example: If a coin is flipped 100 times and heads appears 48 times, the frequency of heads would be 48/100 = 0.48.

The document then introduces the concept of probability. It states that probability is always a number between 0 and 1, inclusive. This range is crucial for understanding the likelihood of events occurring.

Highlight: Probability is always represented by a number between 0 and 1, where 0 indicates an impossible event and 1 indicates a certain event.

The concept of a random experiment is introduced, with an example of rolling a die. The possible outcomes (issues) are listed as 1, 2, 3, 4, 5, and 6. An event is then defined as obtaining an even number.

Example: In a die roll, the event "obtaining an even number" includes the outcomes 2, 4, and 6.

The document also mentions the concept of equiprobability, which is crucial in many probability calculations. Equiprobability assumes that all possible outcomes of an experiment are equally likely to occur.

Vocabulary: Equiprobability refers to a situation where all possible outcomes of an experiment have an equal chance of occurring.

Finally, the document emphasizes two extreme cases in probability theory:

  1. Impossible Event: An event with a probability of 0, meaning it will never occur.
  2. Certain Event: An event with a probability of 1, meaning it will always occur.

These concepts form the foundation for more advanced topics in probability theory and statistics, such as those covered in carte mentale probabilité terminale or calcul probabilité successive.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

15 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.