Matières

Matières

Plus

Apprends à Développer et Réduire des Expressions en Ligne pour le Collège et Seconde

Voir

Apprends à Développer et Réduire des Expressions en Ligne pour le Collège et Seconde

Developing and reducing algebraic expressions in mathematics

This guide explains how to développer une expression (develop an expression) and reduce algebraic expressions, crucial skills for students in mathematics. It covers distributive property, special cases like squaring binomials, and techniques for simplifying expressions.

  • Developing expressions involves applying the distributive property to expand parentheses
  • Reducing expressions requires grouping like terms and performing calculations
  • Special cases, such as (a+b)², have specific formulas for quick development
  • Proper understanding of these concepts is essential for solving more complex mathematical problems

04/02/2022

481

ол
-> X en +
R(gerb) =Rxa +Rxb = Ra+kb
distributive
ex:
Développer une
expression
17:5(x + 4)
= 5 × x + 5 x 4
Sxx+5x
=5x +0
2م
a+b(c+d) = ac

Voir

Reducing Algebraic Expressions

This page focuses on réduire expression algébrique exercices (reducing algebraic expression exercises), which is an essential skill in algebra, particularly for students studying réduire une expression en ligne (reducing an expression online) or working on expression algébrique exercices corrigés (corrected algebraic expression exercises).

Reducing an algebraic expression involves simplifying it by combining like terms and performing calculations. This process is crucial for simplifier et réduire une expression (simplifying and reducing an expression) to its most compact form.

Definition: Reducing an expression means to simplify it by combining like terms and performing any possible calculations without changing the value of the expression.

The page outlines several key points for reducing expressions:

  1. Identify terms with the same variables or constants.
  2. Pay attention to signs, especially when dealing with subtraction or negative terms.
  3. Remove parentheses carefully, following specific rules.

Highlight: When removing parentheses, follow these rules:

  • If there's a plus sign before the parentheses, simply remove the parentheses and keep the signs inside as they are.
  • If there's a minus sign before the parentheses, remove the parentheses and change all the signs inside.

Example:

  • (2x + 3) remains 2x + 3 when the parentheses are removed.
  • -(x + 3) becomes -x - 3 when the parentheses are removed.
  • -(-y - 7) becomes +y + 7 when the parentheses are removed.

The process of reducing an expression involves:

  1. Removing unnecessary parentheses
  2. Reorganizing terms by "families" (like terms)
  3. Counting and combining terms in each "family"

This skill is particularly important for addition et soustraction d'expressions algébriques exercices (addition and subtraction of algebraic expressions exercises) and transformation d'expression algébrique (transformation of algebraic expression).

Mastering the ability to reduce expressions is crucial for solving more complex mathematical problems and is a fundamental skill in algebra. Practice with various examples and exercises will help students become proficient in this essential mathematical technique.

ол
-> X en +
R(gerb) =Rxa +Rxb = Ra+kb
distributive
ex:
Développer une
expression
17:5(x + 4)
= 5 × x + 5 x 4
Sxx+5x
=5x +0
2م
a+b(c+d) = ac

Voir

Developing Algebraic Expressions

This page focuses on the process of développer une expression (developing an expression) in algebra, which is a fundamental skill for students, particularly those studying développement maths 3ème (math development in 9th grade).

The main concept introduced is the distributive property, which is used to expand expressions containing parentheses. This property is essential for développer une expression exemple (developing an expression example) and solving more complex mathematical problems.

Definition: The distributive property states that a(b + c) = ab + ac. This means that when multiplying a term by a sum inside parentheses, you multiply the term by each element inside the parentheses.

Example: To développer une expression exemple, consider 5(x + 4): 5(x + 4) = 5 × x + 5 × 4 = 5x + 20

The page also introduces a more complex case of distribution with two binomials:

Formula: a + b(c + d) = ac + ad + bc + bd

Example: (x + 3)(2 + x) = x × 2 + x × x + 3 × 2 + 3 × x = 2x + x² + 6 + 3x = x² + 5x + 6

A special case is highlighted for squaring binomials:

Highlight: (a + b)² = a² + 2ab + b²

This formula is particularly useful for quickly développer une expression Seconde (developing an expression in 10th grade) without going through the full distribution process.

Example: (x + 5)² = x² + 2(x)(5) + 5² = x² + 10x + 25

Understanding these concepts and practicing with various examples will help students master the skill of developing algebraic expressions, which is crucial for more advanced mathematical topics.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

13 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.

Apprends à Développer et Réduire des Expressions en Ligne pour le Collège et Seconde

Developing and reducing algebraic expressions in mathematics

This guide explains how to développer une expression (develop an expression) and reduce algebraic expressions, crucial skills for students in mathematics. It covers distributive property, special cases like squaring binomials, and techniques for simplifying expressions.

  • Developing expressions involves applying the distributive property to expand parentheses
  • Reducing expressions requires grouping like terms and performing calculations
  • Special cases, such as (a+b)², have specific formulas for quick development
  • Proper understanding of these concepts is essential for solving more complex mathematical problems

04/02/2022

481

 

3e/5e

 

Maths

20

ол
-> X en +
R(gerb) =Rxa +Rxb = Ra+kb
distributive
ex:
Développer une
expression
17:5(x + 4)
= 5 × x + 5 x 4
Sxx+5x
=5x +0
2م
a+b(c+d) = ac

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Reducing Algebraic Expressions

This page focuses on réduire expression algébrique exercices (reducing algebraic expression exercises), which is an essential skill in algebra, particularly for students studying réduire une expression en ligne (reducing an expression online) or working on expression algébrique exercices corrigés (corrected algebraic expression exercises).

Reducing an algebraic expression involves simplifying it by combining like terms and performing calculations. This process is crucial for simplifier et réduire une expression (simplifying and reducing an expression) to its most compact form.

Definition: Reducing an expression means to simplify it by combining like terms and performing any possible calculations without changing the value of the expression.

The page outlines several key points for reducing expressions:

  1. Identify terms with the same variables or constants.
  2. Pay attention to signs, especially when dealing with subtraction or negative terms.
  3. Remove parentheses carefully, following specific rules.

Highlight: When removing parentheses, follow these rules:

  • If there's a plus sign before the parentheses, simply remove the parentheses and keep the signs inside as they are.
  • If there's a minus sign before the parentheses, remove the parentheses and change all the signs inside.

Example:

  • (2x + 3) remains 2x + 3 when the parentheses are removed.
  • -(x + 3) becomes -x - 3 when the parentheses are removed.
  • -(-y - 7) becomes +y + 7 when the parentheses are removed.

The process of reducing an expression involves:

  1. Removing unnecessary parentheses
  2. Reorganizing terms by "families" (like terms)
  3. Counting and combining terms in each "family"

This skill is particularly important for addition et soustraction d'expressions algébriques exercices (addition and subtraction of algebraic expressions exercises) and transformation d'expression algébrique (transformation of algebraic expression).

Mastering the ability to reduce expressions is crucial for solving more complex mathematical problems and is a fundamental skill in algebra. Practice with various examples and exercises will help students become proficient in this essential mathematical technique.

ол
-> X en +
R(gerb) =Rxa +Rxb = Ra+kb
distributive
ex:
Développer une
expression
17:5(x + 4)
= 5 × x + 5 x 4
Sxx+5x
=5x +0
2م
a+b(c+d) = ac

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Developing Algebraic Expressions

This page focuses on the process of développer une expression (developing an expression) in algebra, which is a fundamental skill for students, particularly those studying développement maths 3ème (math development in 9th grade).

The main concept introduced is the distributive property, which is used to expand expressions containing parentheses. This property is essential for développer une expression exemple (developing an expression example) and solving more complex mathematical problems.

Definition: The distributive property states that a(b + c) = ab + ac. This means that when multiplying a term by a sum inside parentheses, you multiply the term by each element inside the parentheses.

Example: To développer une expression exemple, consider 5(x + 4): 5(x + 4) = 5 × x + 5 × 4 = 5x + 20

The page also introduces a more complex case of distribution with two binomials:

Formula: a + b(c + d) = ac + ad + bc + bd

Example: (x + 3)(2 + x) = x × 2 + x × x + 3 × 2 + 3 × x = 2x + x² + 6 + 3x = x² + 5x + 6

A special case is highlighted for squaring binomials:

Highlight: (a + b)² = a² + 2ab + b²

This formula is particularly useful for quickly développer une expression Seconde (developing an expression in 10th grade) without going through the full distribution process.

Example: (x + 5)² = x² + 2(x)(5) + 5² = x² + 10x + 25

Understanding these concepts and practicing with various examples will help students master the skill of developing algebraic expressions, which is crucial for more advanced mathematical topics.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

13 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.