Matières

Matières

Plus

Esercizi sulla Distributività per la 5ª e 4ª: PDF da Stampare e Fiche di Revisione

Voir

Esercizi sulla Distributività per la 5ª e 4ª: PDF da Stampare e Fiche di Revisione

This PDF provides a comprehensive guide on distributivity, focusing on developing and factoring algebraic expressions. It covers simple and double distributivity, with examples and exercises for practice.

Key points:

  • Explains simple and double distributivity rules
  • Provides examples of developing and factoring expressions
  • Includes complex exercises for advanced practice
  • Offers step-by-step solutions for better understanding

The content is suitable for students studying distributivité 5ème cours and factorisation exercices corrigés PDF, making it an excellent resource for fiche de révision 4ème maths PDF.

15/05/2023

968

Distributivité
Rappels Développer Distribuer
Simple:
k (a b) = kxa #kxb
Double:
k (a=b) = ka kb
Réduire Factoriser
(a + b)(c +d) = axb + axd

Voir

Advanced Factorization Techniques

This page delves deeper into factorization techniques, building upon the distributivity concepts introduced earlier. It provides more complex examples and exercises to challenge students' understanding.

Vocabulary: Factorization is the process of breaking down an algebraic expression into a product of simpler expressions.

The page starts by presenting factorization rules:

  • ka + kb = k(a + b)
  • ka - kb = k(a - b)

Example: 2x - 14 can be factored as 2(x - 7)

Several more examples are provided to illustrate different factorization scenarios:

  • 3y - 5y = y(3 - 5) = -2y
  • 75ab - 25a + 15ac = 5a(15b - 5 + 3c)
  • 3x + 6xy = 3x(1 + 2y)

The page then moves on to more complex exercises, demonstrating how to factor and simplify intricate expressions:

Example: A = (x - 3)(2x + 5) - (x - 3)(x - 7) Solution: A = (x - 3)[(2x + 5) - (x - 7)] = (x - 3)(3x - 2)

Another complex example is provided:

B = (2x + 3)(x + 8) - (3x - 2)(2x + 3)

The solution process is shown step-by-step, culminating in the final factored form:

B = 2(2x + 3)(x + 5)

Highlight: These complex exercises are excellent practice for développement et factorisation exercices corrigés PDF 4ème and factorisation 3ème exercice corrigé, helping students master advanced algebraic manipulation techniques.

Distributivité
Rappels Développer Distribuer
Simple:
k (a b) = kxa #kxb
Double:
k (a=b) = ka kb
Réduire Factoriser
(a + b)(c +d) = axb + axd

Voir

Distributivity: Developing and Factoring Expressions

This page introduces the concept of distributivity in algebra, focusing on developing and factoring expressions. It covers both simple and double distributivity, providing clear examples and rules for students to follow.

Definition: Distributivity is a fundamental property in algebra that allows us to multiply a number or variable by a sum or difference.

The page outlines two main types of distributivity:

  1. Simple Distributivity: k(a + b) = ka + kb
  2. Double Distributivity: (a + b)(c + d) = ac + ad + bc + bd

Example: For simple distributivity, 13 × 101 can be calculated as 13 × (100 + 1) = 1300 + 13 = 1313.

The page also covers reducing and factoring expressions, providing a formula for expanding the product of two binomials:

(a + b)(c + d) = ac + ad + bc + bd (a + b)(c - d) = ac - ad + bc - bd

Highlight: These formulas are crucial for solving more complex algebraic problems and are essential for students to memorize.

The page concludes with an equation to solve: 3(x - 1) = 5(x + 1) + x, demonstrating how to apply distributivity in problem-solving.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

15 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.

Esercizi sulla Distributività per la 5ª e 4ª: PDF da Stampare e Fiche di Revisione

This PDF provides a comprehensive guide on distributivity, focusing on developing and factoring algebraic expressions. It covers simple and double distributivity, with examples and exercises for practice.

Key points:

  • Explains simple and double distributivity rules
  • Provides examples of developing and factoring expressions
  • Includes complex exercises for advanced practice
  • Offers step-by-step solutions for better understanding

The content is suitable for students studying distributivité 5ème cours and factorisation exercices corrigés PDF, making it an excellent resource for fiche de révision 4ème maths PDF.

15/05/2023

968

 

5e/4e

 

Maths

28

Distributivité
Rappels Développer Distribuer
Simple:
k (a b) = kxa #kxb
Double:
k (a=b) = ka kb
Réduire Factoriser
(a + b)(c +d) = axb + axd

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Advanced Factorization Techniques

This page delves deeper into factorization techniques, building upon the distributivity concepts introduced earlier. It provides more complex examples and exercises to challenge students' understanding.

Vocabulary: Factorization is the process of breaking down an algebraic expression into a product of simpler expressions.

The page starts by presenting factorization rules:

  • ka + kb = k(a + b)
  • ka - kb = k(a - b)

Example: 2x - 14 can be factored as 2(x - 7)

Several more examples are provided to illustrate different factorization scenarios:

  • 3y - 5y = y(3 - 5) = -2y
  • 75ab - 25a + 15ac = 5a(15b - 5 + 3c)
  • 3x + 6xy = 3x(1 + 2y)

The page then moves on to more complex exercises, demonstrating how to factor and simplify intricate expressions:

Example: A = (x - 3)(2x + 5) - (x - 3)(x - 7) Solution: A = (x - 3)[(2x + 5) - (x - 7)] = (x - 3)(3x - 2)

Another complex example is provided:

B = (2x + 3)(x + 8) - (3x - 2)(2x + 3)

The solution process is shown step-by-step, culminating in the final factored form:

B = 2(2x + 3)(x + 5)

Highlight: These complex exercises are excellent practice for développement et factorisation exercices corrigés PDF 4ème and factorisation 3ème exercice corrigé, helping students master advanced algebraic manipulation techniques.

Distributivité
Rappels Développer Distribuer
Simple:
k (a b) = kxa #kxb
Double:
k (a=b) = ka kb
Réduire Factoriser
(a + b)(c +d) = axb + axd

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Distributivity: Developing and Factoring Expressions

This page introduces the concept of distributivity in algebra, focusing on developing and factoring expressions. It covers both simple and double distributivity, providing clear examples and rules for students to follow.

Definition: Distributivity is a fundamental property in algebra that allows us to multiply a number or variable by a sum or difference.

The page outlines two main types of distributivity:

  1. Simple Distributivity: k(a + b) = ka + kb
  2. Double Distributivity: (a + b)(c + d) = ac + ad + bc + bd

Example: For simple distributivity, 13 × 101 can be calculated as 13 × (100 + 1) = 1300 + 13 = 1313.

The page also covers reducing and factoring expressions, providing a formula for expanding the product of two binomials:

(a + b)(c + d) = ac + ad + bc + bd (a + b)(c - d) = ac - ad + bc - bd

Highlight: These formulas are crucial for solving more complex algebraic problems and are essential for students to memorize.

The page concludes with an equation to solve: 3(x - 1) = 5(x + 1) + x, demonstrating how to apply distributivity in problem-solving.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

15 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.