Ouvrir l'appli

Matières

11

8 janv. 2026

10 pages

Forme Canonique et Propriétés des Paraboles

Tu vas découvrir la forme canoniquedes fonctions quadratiques, une... Affiche plus

Page 1
Page 2
Page 3
Page 4
Page 5
Page 6
Page 7
Page 8
Page 9
Page 10
1 / 10
# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Présentation du sujet

Tu vas apprendre à maîtriser la forme canonique des fonctions quadratiques. Cette technique te permet de transformer n'importe quelle fonction du type f(x) = ax² + bx + c en quelque chose de beaucoup plus lisible !

La forme canonique s'écrit f(x) = axhx - h² + k, où (h, k) sont les coordonnées du sommet de la parabole. C'est génial parce que tu peux voir d'un coup d'œil où se trouve le point le plus haut ou le plus bas de ta courbe.

💡 Astuce : Avec la forme canonique, plus besoin de chercher le sommet avec des calculs compliqués - il est directement visible dans la formule !

Dans cet examen, tu vas t'entraîner sur des exercices concrets qui montrent pourquoi cette méthode est si utile en maths.

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Exercice 1 - Fonction quadratique de base

Voici ton premier défi : transformer f(x) = -2x² + 12x - 10 en forme canonique. Tu vas utiliser la méthode de complétion du carré, qui est comme un puzzle mathématique !

D'abord, tu dois factoriser le coefficient de x² ici2ici -2 pour isoler les termes en x² et x. Ensuite, tu complètes le carré à l'intérieur des parenthèses en ajoutant et soustrayant le bon nombre.

Une fois ta forme canonique trouvée, tu pourras identifier directement les coordonnées du sommet. Le signe du coefficient a te dira si ta parabole s'ouvre vers le haut (a > 0) ou vers le bas (a < 0).

💡 Rappel : Si a est négatif, le sommet est un maximum ; si a est positif, c'est un minimum !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Exercice 2 - Application concrète

Tu vas maintenant appliquer tes connaissances à un problème d'entreprise ! La fonction de coût de production C(x) = 0,5x² - 10x + 200 représente le coût en euros pour x centaines d'articles.

En transformant cette fonction en forme canonique, tu pourras déterminer combien d'articles l'entreprise doit produire pour minimiser ses coûts. C'est exactement le genre de problème que les entreprises résolvent tous les jours !

Le sommet de la parabole t'indiquera le point de coût minimal, car avec a = 0,5 (positif), la parabole s'ouvre vers le haut. Tu calculeras ensuite le coût minimal en substituant la valeur optimale dans ta fonction.

💡 Astuce pratique : Dans les problèmes de coût, cherche toujours le minimum - c'est là que l'entreprise économise le plus !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Exercice 3 - Construction inverse

Maintenant, on inverse le processus ! Tu as le sommet S(3, -4) et un point A(1, 0) par lequel passe la parabole. Ton mission : retrouver la fonction complète.

Tu commences par écrire la forme canonique avec les coordonnées du sommet : g(x) = ax3x - 3² - 4. Ensuite, tu utilises le point A pour calculer la valeur de a en résolvant 0 = a(1 - 3)² - 4.

Tu décris aussi les transformations géométriques qui permettent de passer de y = x² à ta parabole. Enfin, tu trouves les racines en résolvant g(x) = 0.

💡 Méthode : Quand tu as le sommet, commence toujours par écrire la forme canonique avec a inconnu, puis utilise un autre point pour le calculer !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Solution 1 - Étapes détaillées

La transformation de f(x) = -2x² + 12x - 10 en forme canonique suit une méthode précise. Tu factorises d'abord le coefficient -2 : f(x) = -2x26xx² - 6x - 10.

Pour compléter le carré dans x² - 6x, tu ajoutes et soustrais (6/2)² = 9, ce qui donne x3x - 3² - 9. En substituant, tu obtiens f(x) = -2(x3)29(x - 3)² - 9 - 10.

Après distribution et simplification : f(x) = -2x3x - 3² + 8. Les coordonnées du sommet sont donc (3, 8), et comme a = -2 < 0, c'est un maximum.

💡 Vérification : Tu peux toujours vérifier en développant ta forme canonique pour retrouver la forme initiale !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Tableau de variation

Avec a = -2 (négatif), ta parabole s'ouvre vers le bas et admet un maximum au sommet (3, 8). Cela détermine complètement le comportement de ta fonction.

Pour x < 3, la fonction est croissante (elle monte vers le sommet). Pour x > 3, elle est décroissante (elle descend après le sommet).

Le tableau de variation se résume ainsi : croissante sur ]-∞, 3,maximumde8enx=3,puisdeˊcroissantesur, maximum de 8 en x = 3, puis décroissante sur 3, +∞[.

💡 Mémo : Le signe de a détermine tout - négatif = parabole vers le bas = maximum au sommet !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Solution 2 - Problème d'optimisation

Pour C(x) = 0,5x² - 10x + 200, tu calcules h = -b/(2a) = -(-10)/(2×0,5) = 10. Le sommet est à x = 10, soit 10 centaines d'articles (1000 articles).

La forme canonique devient C(x) = 0,5x10x - 10² + 150 après calcul de k = C(10). Comme a = 0,5 > 0, la parabole s'ouvre vers le haut et le sommet est un minimum.

Le coût minimal est donc de 150 euros, atteint quand l'entreprise produit exactement 1000 articles. C'est le point d'équilibre parfait !

💡 Application : Cette méthode fonctionne pour tous les problèmes d'optimisation en économie !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Solution 3 - Construction et transformations

Avec le sommet S(3, -4), tu écris g(x) = ax3x - 3² - 4. Le point A(1, 0) te donne : 0 = a(1 - 3)² - 4, donc 0 = 4a - 4, et a = 1.

La fonction finale est g(x) = x3x - 3² - 4. Pour passer de y = x² à cette parabole, tu effectues deux transformations : translation de 3 unités vers la droite et 4 unités vers le bas.

Ces transformations géométriques sont visibles directement dans la forme canonique : x3x - 3 indique le décalage horizontal, et -4 le décalage vertical.

💡 Lecture rapide : Dans axhx - h² + k, h est le décalage horizontal et k le décalage vertical !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Calcul des racines

Pour trouver les racines de g(x) = x3x - 3² - 4, tu résous l'équation g(x) = 0. Cela donne x3x - 3² - 4 = 0, donc x3x - 3² = 4.

En prenant la racine carrée des deux côtés : x - 3 = ±2. Tu obtiens deux solutions : x - 3 = 2 doncx=5donc x = 5 et x - 3 = -2 doncx=1donc x = 1.

Les racines sont x₁ = 1 et x₂ = 5. Tu remarques que le point A(1, 0) correspond effectivement à l'une des racines !

💡 Vérification : Remplace tes valeurs dans la fonction originale pour vérifier que tu obtiens bien zéro !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Résultat final

Tu as maintenant maîtrisé tous les aspects de la forme canonique : transformation, identification du sommet, calcul des racines et applications concrètes.

Les racines finales de g(x) sont x₁ = 1 et x₂ = 5, ce qui confirme que ta parabole coupe l'axe des x en ces deux points. Le sommet (3, -4) se situe exactement au milieu, à x = (1 + 5)/2 = 3.

Cette cohérence entre toutes tes réponses prouve que tu maîtrises parfaitement la méthode !

💡 Bravo ! : Tu peux maintenant résoudre n'importe quel problème de fonction quadratique avec confiance !



Si on te demande...

Qu'est-ce que le compagnon IA de Knowunity ?

Notre compagnon IA est spécialement conçu pour répondre aux besoins des étudiants. Sur la base des millions d'éléments de contenu que nous avons sur la plateforme, nous pouvons fournir des réponses vraiment significatives et pertinentes aux étudiants. Mais il ne s'agit pas seulement de réponses, le compagnon a encore plus pour but de guider les élèves dans leurs défis d'apprentissage quotidiens, avec des plans d'étude personnalisés, des quiz ou des éléments de contenu dans le chat et une personnalisation à 100% basée sur les compétences et les développements de l'étudiant.

Où puis-je télécharger l'application Knowunity ?

Tu peux télécharger l'application dans Google Play Store et dans l'App Store d'Apple.

L'application est-elle vraiment gratuite ?

Oui, tu as un accès entièrement gratuit à tous les contenus de l'appli, tu peux chatter ou suivre les créateurs à tout moment. De plus, nous proposons Knowunity Premium, qui te permet de réviser sans limites!

Contenus les plus populaires en Maths

Contenus les plus populaires

Rien ne te convient ? Explore d'autres matières.

Les étudiants nous adorent — il ne manque plus que toi.

4.9/5

App Store

4.8/5

Google Play

L'application est très facile d'utilisation et bien conçue. Jusqu'à présent, j'ai trouvé tout ce que je cherchais et j'ai pu apprendre beaucoup de choses grâce aux présentations ! Je vais certainement utiliser l'application pour un travail en classe ! Et comme source d'inspiration personnelle, elle est bien sûr aussi très utile.

Stefan S

utilisateur iOS

Cette application est vraiment super. Il y a tellement de fiches de révision et d'aide, [...]. Par exemple, la matière qui me pose problème est le français et l'appli a un choix d'aide très large. Grâce à cette application, je me suis améliorée en français. Je la recommanderais à tout le monde.

Samantha Klich

utilisatrice Android

Waouh, je suis vraiment abasourdi. J'ai essayé l'application parce que je l'avais déjà vue plusieurs fois dans la publicité et j'ai été absolument choquée. Cette appli est L'AIDE dont on rêve pour l'école et surtout, elle propose tellement de choses, comme des rédactions et des fiches qui m'ont personnellement TRÈS bien aidé.

Anna

utilisatrice iOS

Meilleur application je voulais m'entraîner pour mes maths puis j'ai tout compris d'un coup c'est mon nouveau prof maintenant 🤣🤣

Thomas R

utilisateur d' Android

super application pour réviser je révise tout les soirs

Esteban M

utilisateur d'Android

Permet de vraiment comprendre les cours sous forme de fiches de révisions déjà faites ! Incroyable, je recommande vraiment

Leny

utilisateur d'Android

L'application est tout simplement géniale ! Il me suffit de taper mon sujet dans la barre de recherche et je le vérifie très rapidement. Je ne dois plus regarder 10 vidéos YouTube pour comprendre quelque chose et j'économise ainsi mon temps. Je te le recommande !

Sudenaz Ocak

utilisateur Android

Cette application m'a vraiment fait m'améliorer ! J'étais vraiment nul en maths à l'école et grâce à l'appli, je suis meilleur en maths ! Je suis tellement reconnaissante que vous ayez créé cette application.

Greenlight Bonnie

utilisateur Android

PARFAIT 🌟 💕🔥 ça facilite Vrmt la révision avec des fiches de révisions fascinants✨🥰

Khady

utilisatrice d'Android

Je conseille vraiment ! je galère à avoir des cours clairs et ça aide énormément !!

Claire

utilisatrice iOS

C’est vraiment mais vraiment la meilleurs appli au début de l’année au collège jetait une élève perturbatrice et j’avais 9 de moyenne générale plus précisément 9,68... Et la un de mes potes me donne cette appli pour réviser c’était incroyable y’a des fiche de révision des quiz bref grâce à cette appli je suis passé de 9,68 à 17,40 trop contente 🤩🤩

Raoul

utilisateur IOS

Knowunity est vraiment une application incroyable elle est pour tous les âges et s’adapte à tous les niveaux.Elle permet de mieux comprendre et apprendre. Cette application est super pour les devoirs et pour les contrôles je la recommande à tous le monde petit ou grands

Ella

utilisatrice iOS

L'application est très facile d'utilisation et bien conçue. Jusqu'à présent, j'ai trouvé tout ce que je cherchais et j'ai pu apprendre beaucoup de choses grâce aux présentations ! Je vais certainement utiliser l'application pour un travail en classe ! Et comme source d'inspiration personnelle, elle est bien sûr aussi très utile.

Stefan S

utilisateur iOS

Cette application est vraiment super. Il y a tellement de fiches de révision et d'aide, [...]. Par exemple, la matière qui me pose problème est le français et l'appli a un choix d'aide très large. Grâce à cette application, je me suis améliorée en français. Je la recommanderais à tout le monde.

Samantha Klich

utilisatrice Android

Waouh, je suis vraiment abasourdi. J'ai essayé l'application parce que je l'avais déjà vue plusieurs fois dans la publicité et j'ai été absolument choquée. Cette appli est L'AIDE dont on rêve pour l'école et surtout, elle propose tellement de choses, comme des rédactions et des fiches qui m'ont personnellement TRÈS bien aidé.

Anna

utilisatrice iOS

Meilleur application je voulais m'entraîner pour mes maths puis j'ai tout compris d'un coup c'est mon nouveau prof maintenant 🤣🤣

Thomas R

utilisateur d' Android

super application pour réviser je révise tout les soirs

Esteban M

utilisateur d'Android

Permet de vraiment comprendre les cours sous forme de fiches de révisions déjà faites ! Incroyable, je recommande vraiment

Leny

utilisateur d'Android

L'application est tout simplement géniale ! Il me suffit de taper mon sujet dans la barre de recherche et je le vérifie très rapidement. Je ne dois plus regarder 10 vidéos YouTube pour comprendre quelque chose et j'économise ainsi mon temps. Je te le recommande !

Sudenaz Ocak

utilisateur Android

Cette application m'a vraiment fait m'améliorer ! J'étais vraiment nul en maths à l'école et grâce à l'appli, je suis meilleur en maths ! Je suis tellement reconnaissante que vous ayez créé cette application.

Greenlight Bonnie

utilisateur Android

PARFAIT 🌟 💕🔥 ça facilite Vrmt la révision avec des fiches de révisions fascinants✨🥰

Khady

utilisatrice d'Android

Je conseille vraiment ! je galère à avoir des cours clairs et ça aide énormément !!

Claire

utilisatrice iOS

C’est vraiment mais vraiment la meilleurs appli au début de l’année au collège jetait une élève perturbatrice et j’avais 9 de moyenne générale plus précisément 9,68... Et la un de mes potes me donne cette appli pour réviser c’était incroyable y’a des fiche de révision des quiz bref grâce à cette appli je suis passé de 9,68 à 17,40 trop contente 🤩🤩

Raoul

utilisateur IOS

Knowunity est vraiment une application incroyable elle est pour tous les âges et s’adapte à tous les niveaux.Elle permet de mieux comprendre et apprendre. Cette application est super pour les devoirs et pour les contrôles je la recommande à tous le monde petit ou grands

Ella

utilisatrice iOS

 

Maths

11

8 janv. 2026

10 pages

Forme Canonique et Propriétés des Paraboles

Tu vas découvrir la forme canonique des fonctions quadratiques, une méthode super pratique pour analyser les paraboles ! C'est comme avoir une formule magique qui te révèle directement le sommet et les transformations d'une parabole.

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Inscris-toi pour voir le contenuC'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Présentation du sujet

Tu vas apprendre à maîtriser la forme canonique des fonctions quadratiques. Cette technique te permet de transformer n'importe quelle fonction du type f(x) = ax² + bx + c en quelque chose de beaucoup plus lisible !

La forme canonique s'écrit f(x) = axhx - h² + k, où (h, k) sont les coordonnées du sommet de la parabole. C'est génial parce que tu peux voir d'un coup d'œil où se trouve le point le plus haut ou le plus bas de ta courbe.

💡 Astuce : Avec la forme canonique, plus besoin de chercher le sommet avec des calculs compliqués - il est directement visible dans la formule !

Dans cet examen, tu vas t'entraîner sur des exercices concrets qui montrent pourquoi cette méthode est si utile en maths.

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Inscris-toi pour voir le contenuC'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Exercice 1 - Fonction quadratique de base

Voici ton premier défi : transformer f(x) = -2x² + 12x - 10 en forme canonique. Tu vas utiliser la méthode de complétion du carré, qui est comme un puzzle mathématique !

D'abord, tu dois factoriser le coefficient de x² ici2ici -2 pour isoler les termes en x² et x. Ensuite, tu complètes le carré à l'intérieur des parenthèses en ajoutant et soustrayant le bon nombre.

Une fois ta forme canonique trouvée, tu pourras identifier directement les coordonnées du sommet. Le signe du coefficient a te dira si ta parabole s'ouvre vers le haut (a > 0) ou vers le bas (a < 0).

💡 Rappel : Si a est négatif, le sommet est un maximum ; si a est positif, c'est un minimum !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Inscris-toi pour voir le contenuC'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Exercice 2 - Application concrète

Tu vas maintenant appliquer tes connaissances à un problème d'entreprise ! La fonction de coût de production C(x) = 0,5x² - 10x + 200 représente le coût en euros pour x centaines d'articles.

En transformant cette fonction en forme canonique, tu pourras déterminer combien d'articles l'entreprise doit produire pour minimiser ses coûts. C'est exactement le genre de problème que les entreprises résolvent tous les jours !

Le sommet de la parabole t'indiquera le point de coût minimal, car avec a = 0,5 (positif), la parabole s'ouvre vers le haut. Tu calculeras ensuite le coût minimal en substituant la valeur optimale dans ta fonction.

💡 Astuce pratique : Dans les problèmes de coût, cherche toujours le minimum - c'est là que l'entreprise économise le plus !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Inscris-toi pour voir le contenuC'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Exercice 3 - Construction inverse

Maintenant, on inverse le processus ! Tu as le sommet S(3, -4) et un point A(1, 0) par lequel passe la parabole. Ton mission : retrouver la fonction complète.

Tu commences par écrire la forme canonique avec les coordonnées du sommet : g(x) = ax3x - 3² - 4. Ensuite, tu utilises le point A pour calculer la valeur de a en résolvant 0 = a(1 - 3)² - 4.

Tu décris aussi les transformations géométriques qui permettent de passer de y = x² à ta parabole. Enfin, tu trouves les racines en résolvant g(x) = 0.

💡 Méthode : Quand tu as le sommet, commence toujours par écrire la forme canonique avec a inconnu, puis utilise un autre point pour le calculer !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Inscris-toi pour voir le contenuC'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Solution 1 - Étapes détaillées

La transformation de f(x) = -2x² + 12x - 10 en forme canonique suit une méthode précise. Tu factorises d'abord le coefficient -2 : f(x) = -2x26xx² - 6x - 10.

Pour compléter le carré dans x² - 6x, tu ajoutes et soustrais (6/2)² = 9, ce qui donne x3x - 3² - 9. En substituant, tu obtiens f(x) = -2(x3)29(x - 3)² - 9 - 10.

Après distribution et simplification : f(x) = -2x3x - 3² + 8. Les coordonnées du sommet sont donc (3, 8), et comme a = -2 < 0, c'est un maximum.

💡 Vérification : Tu peux toujours vérifier en développant ta forme canonique pour retrouver la forme initiale !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Inscris-toi pour voir le contenuC'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Tableau de variation

Avec a = -2 (négatif), ta parabole s'ouvre vers le bas et admet un maximum au sommet (3, 8). Cela détermine complètement le comportement de ta fonction.

Pour x < 3, la fonction est croissante (elle monte vers le sommet). Pour x > 3, elle est décroissante (elle descend après le sommet).

Le tableau de variation se résume ainsi : croissante sur ]-∞, 3,maximumde8enx=3,puisdeˊcroissantesur, maximum de 8 en x = 3, puis décroissante sur 3, +∞[.

💡 Mémo : Le signe de a détermine tout - négatif = parabole vers le bas = maximum au sommet !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Inscris-toi pour voir le contenuC'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Solution 2 - Problème d'optimisation

Pour C(x) = 0,5x² - 10x + 200, tu calcules h = -b/(2a) = -(-10)/(2×0,5) = 10. Le sommet est à x = 10, soit 10 centaines d'articles (1000 articles).

La forme canonique devient C(x) = 0,5x10x - 10² + 150 après calcul de k = C(10). Comme a = 0,5 > 0, la parabole s'ouvre vers le haut et le sommet est un minimum.

Le coût minimal est donc de 150 euros, atteint quand l'entreprise produit exactement 1000 articles. C'est le point d'équilibre parfait !

💡 Application : Cette méthode fonctionne pour tous les problèmes d'optimisation en économie !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Inscris-toi pour voir le contenuC'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Solution 3 - Construction et transformations

Avec le sommet S(3, -4), tu écris g(x) = ax3x - 3² - 4. Le point A(1, 0) te donne : 0 = a(1 - 3)² - 4, donc 0 = 4a - 4, et a = 1.

La fonction finale est g(x) = x3x - 3² - 4. Pour passer de y = x² à cette parabole, tu effectues deux transformations : translation de 3 unités vers la droite et 4 unités vers le bas.

Ces transformations géométriques sont visibles directement dans la forme canonique : x3x - 3 indique le décalage horizontal, et -4 le décalage vertical.

💡 Lecture rapide : Dans axhx - h² + k, h est le décalage horizontal et k le décalage vertical !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Inscris-toi pour voir le contenuC'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Calcul des racines

Pour trouver les racines de g(x) = x3x - 3² - 4, tu résous l'équation g(x) = 0. Cela donne x3x - 3² - 4 = 0, donc x3x - 3² = 4.

En prenant la racine carrée des deux côtés : x - 3 = ±2. Tu obtiens deux solutions : x - 3 = 2 doncx=5donc x = 5 et x - 3 = -2 doncx=1donc x = 1.

Les racines sont x₁ = 1 et x₂ = 5. Tu remarques que le point A(1, 0) correspond effectivement à l'une des racines !

💡 Vérification : Remplace tes valeurs dans la fonction originale pour vérifier que tu obtiens bien zéro !

# Forme Canonique

Généré par Knowunity.fr - Sep 23

Description: Cet examen couvre la forme canonique, la complétion du carré et les propri

Inscris-toi pour voir le contenuC'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Résultat final

Tu as maintenant maîtrisé tous les aspects de la forme canonique : transformation, identification du sommet, calcul des racines et applications concrètes.

Les racines finales de g(x) sont x₁ = 1 et x₂ = 5, ce qui confirme que ta parabole coupe l'axe des x en ces deux points. Le sommet (3, -4) se situe exactement au milieu, à x = (1 + 5)/2 = 3.

Cette cohérence entre toutes tes réponses prouve que tu maîtrises parfaitement la méthode !

💡 Bravo ! : Tu peux maintenant résoudre n'importe quel problème de fonction quadratique avec confiance !

Si on te demande...

Qu'est-ce que le compagnon IA de Knowunity ?

Notre compagnon IA est spécialement conçu pour répondre aux besoins des étudiants. Sur la base des millions d'éléments de contenu que nous avons sur la plateforme, nous pouvons fournir des réponses vraiment significatives et pertinentes aux étudiants. Mais il ne s'agit pas seulement de réponses, le compagnon a encore plus pour but de guider les élèves dans leurs défis d'apprentissage quotidiens, avec des plans d'étude personnalisés, des quiz ou des éléments de contenu dans le chat et une personnalisation à 100% basée sur les compétences et les développements de l'étudiant.

Où puis-je télécharger l'application Knowunity ?

Tu peux télécharger l'application dans Google Play Store et dans l'App Store d'Apple.

L'application est-elle vraiment gratuite ?

Oui, tu as un accès entièrement gratuit à tous les contenus de l'appli, tu peux chatter ou suivre les créateurs à tout moment. De plus, nous proposons Knowunity Premium, qui te permet de réviser sans limites!

1

Outils Intelligents NOUVEAU

Transforme cette fiche en : ✓ 50+ Questions d'Entraînement ✓ Cartes Mémoire Interactives ✓ Examen Blanc Complet ✓ Plans de Dissertation

Examen Blanc
Quiz
Flashcards
Dissertation

Contenus les plus populaires en Maths

Contenus les plus populaires

Rien ne te convient ? Explore d'autres matières.

Les étudiants nous adorent — il ne manque plus que toi.

4.9/5

App Store

4.8/5

Google Play

L'application est très facile d'utilisation et bien conçue. Jusqu'à présent, j'ai trouvé tout ce que je cherchais et j'ai pu apprendre beaucoup de choses grâce aux présentations ! Je vais certainement utiliser l'application pour un travail en classe ! Et comme source d'inspiration personnelle, elle est bien sûr aussi très utile.

Stefan S

utilisateur iOS

Cette application est vraiment super. Il y a tellement de fiches de révision et d'aide, [...]. Par exemple, la matière qui me pose problème est le français et l'appli a un choix d'aide très large. Grâce à cette application, je me suis améliorée en français. Je la recommanderais à tout le monde.

Samantha Klich

utilisatrice Android

Waouh, je suis vraiment abasourdi. J'ai essayé l'application parce que je l'avais déjà vue plusieurs fois dans la publicité et j'ai été absolument choquée. Cette appli est L'AIDE dont on rêve pour l'école et surtout, elle propose tellement de choses, comme des rédactions et des fiches qui m'ont personnellement TRÈS bien aidé.

Anna

utilisatrice iOS

Meilleur application je voulais m'entraîner pour mes maths puis j'ai tout compris d'un coup c'est mon nouveau prof maintenant 🤣🤣

Thomas R

utilisateur d' Android

super application pour réviser je révise tout les soirs

Esteban M

utilisateur d'Android

Permet de vraiment comprendre les cours sous forme de fiches de révisions déjà faites ! Incroyable, je recommande vraiment

Leny

utilisateur d'Android

L'application est tout simplement géniale ! Il me suffit de taper mon sujet dans la barre de recherche et je le vérifie très rapidement. Je ne dois plus regarder 10 vidéos YouTube pour comprendre quelque chose et j'économise ainsi mon temps. Je te le recommande !

Sudenaz Ocak

utilisateur Android

Cette application m'a vraiment fait m'améliorer ! J'étais vraiment nul en maths à l'école et grâce à l'appli, je suis meilleur en maths ! Je suis tellement reconnaissante que vous ayez créé cette application.

Greenlight Bonnie

utilisateur Android

PARFAIT 🌟 💕🔥 ça facilite Vrmt la révision avec des fiches de révisions fascinants✨🥰

Khady

utilisatrice d'Android

Je conseille vraiment ! je galère à avoir des cours clairs et ça aide énormément !!

Claire

utilisatrice iOS

C’est vraiment mais vraiment la meilleurs appli au début de l’année au collège jetait une élève perturbatrice et j’avais 9 de moyenne générale plus précisément 9,68... Et la un de mes potes me donne cette appli pour réviser c’était incroyable y’a des fiche de révision des quiz bref grâce à cette appli je suis passé de 9,68 à 17,40 trop contente 🤩🤩

Raoul

utilisateur IOS

Knowunity est vraiment une application incroyable elle est pour tous les âges et s’adapte à tous les niveaux.Elle permet de mieux comprendre et apprendre. Cette application est super pour les devoirs et pour les contrôles je la recommande à tous le monde petit ou grands

Ella

utilisatrice iOS

L'application est très facile d'utilisation et bien conçue. Jusqu'à présent, j'ai trouvé tout ce que je cherchais et j'ai pu apprendre beaucoup de choses grâce aux présentations ! Je vais certainement utiliser l'application pour un travail en classe ! Et comme source d'inspiration personnelle, elle est bien sûr aussi très utile.

Stefan S

utilisateur iOS

Cette application est vraiment super. Il y a tellement de fiches de révision et d'aide, [...]. Par exemple, la matière qui me pose problème est le français et l'appli a un choix d'aide très large. Grâce à cette application, je me suis améliorée en français. Je la recommanderais à tout le monde.

Samantha Klich

utilisatrice Android

Waouh, je suis vraiment abasourdi. J'ai essayé l'application parce que je l'avais déjà vue plusieurs fois dans la publicité et j'ai été absolument choquée. Cette appli est L'AIDE dont on rêve pour l'école et surtout, elle propose tellement de choses, comme des rédactions et des fiches qui m'ont personnellement TRÈS bien aidé.

Anna

utilisatrice iOS

Meilleur application je voulais m'entraîner pour mes maths puis j'ai tout compris d'un coup c'est mon nouveau prof maintenant 🤣🤣

Thomas R

utilisateur d' Android

super application pour réviser je révise tout les soirs

Esteban M

utilisateur d'Android

Permet de vraiment comprendre les cours sous forme de fiches de révisions déjà faites ! Incroyable, je recommande vraiment

Leny

utilisateur d'Android

L'application est tout simplement géniale ! Il me suffit de taper mon sujet dans la barre de recherche et je le vérifie très rapidement. Je ne dois plus regarder 10 vidéos YouTube pour comprendre quelque chose et j'économise ainsi mon temps. Je te le recommande !

Sudenaz Ocak

utilisateur Android

Cette application m'a vraiment fait m'améliorer ! J'étais vraiment nul en maths à l'école et grâce à l'appli, je suis meilleur en maths ! Je suis tellement reconnaissante que vous ayez créé cette application.

Greenlight Bonnie

utilisateur Android

PARFAIT 🌟 💕🔥 ça facilite Vrmt la révision avec des fiches de révisions fascinants✨🥰

Khady

utilisatrice d'Android

Je conseille vraiment ! je galère à avoir des cours clairs et ça aide énormément !!

Claire

utilisatrice iOS

C’est vraiment mais vraiment la meilleurs appli au début de l’année au collège jetait une élève perturbatrice et j’avais 9 de moyenne générale plus précisément 9,68... Et la un de mes potes me donne cette appli pour réviser c’était incroyable y’a des fiche de révision des quiz bref grâce à cette appli je suis passé de 9,68 à 17,40 trop contente 🤩🤩

Raoul

utilisateur IOS

Knowunity est vraiment une application incroyable elle est pour tous les âges et s’adapte à tous les niveaux.Elle permet de mieux comprendre et apprendre. Cette application est super pour les devoirs et pour les contrôles je la recommande à tous le monde petit ou grands

Ella

utilisatrice iOS