Ouvrir l'appli

Matières

Apprends les Équations de Droite en Mathématiques

Ouvrir

42

1

user profile picture

Clément GROSPERRIN

17/11/2022

Maths

MATHÉMATIQUES - Équations de droite

Apprends les Équations de Droite en Mathématiques

Voici un résumé détaillé des équations de droite en mathématiques, mettant l'accent sur le calcul du coefficient directeur d'une droite et l'équation de droite parallèle à l'axe des ordonnées :

Les équations de droite sont fondamentales en mathématiques pour représenter des relations linéaires. Elles se présentent sous deux formes principales selon l'orientation de la droite.

  • Pour les droites non parallèles à l'axe des ordonnées : y = mx + p
  • Pour les droites parallèles à l'axe des ordonnées : x = c

Le coefficient directeur (m) et l'ordonnée à l'origine (p) sont des éléments clés pour comprendre et tracer ces droites.

...

17/11/2022

1431

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

20 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 17 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.

Apprends les Équations de Droite en Mathématiques

user profile picture

Clément GROSPERRIN

@clement_gpn

·

349 Abonnés

Suivre

Voici un résumé détaillé des équations de droite en mathématiques, mettant l'accent sur le calcul du coefficient directeur d'une droite et l'équation de droite parallèle à l'axe des ordonnées :

Les équations de droite sont fondamentales en mathématiques pour représenter des relations linéaires. Elles se présentent sous deux formes principales selon l'orientation de la droite.

  • Pour les droites non parallèles à l'axe des ordonnées : y = mx + p
  • Pour les droites parallèles à l'axe des ordonnées : x = c

Le coefficient directeur (m) et l'ordonnée à l'origine (p) sont des éléments clés pour comprendre et tracer ces droites.

...

17/11/2022

1431

 

1ère

 

Maths

42

1
MATHÉMATIQUES
Equations de charts
Toute droite non parallèle à l'axe des ordonnées a une équation
de la forme y = mx + f
= ax + b
y
- p es

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Équations de droite et leurs caractéristiques

Cette page présente les différentes formes d'équations de droite en mathématiques et leurs propriétés essentielles. Elle explique comment représenter algébriquement une droite dans un plan cartésien et comment interpréter les éléments de ces équations.

Définition: Une droite non parallèle à l'axe des ordonnées a une équation de la forme y = mx + p, où m est le coefficient directeur et p l'ordonnée à l'origine.

Le coefficient directeur m, également appelé pente, est un élément clé pour comprendre l'inclinaison de la droite. L'ordonnée à l'origine p indique le point où la droite coupe l'axe des ordonnées.

Highlight: Les droites parallèles à l'axe des ordonnées ont une forme d'équation particulière : x = c, où c est une constante.

La page présente également la méthode de calcul du coefficient directeur d'une droite. Cette méthode utilise les coordonnées de deux points de la droite :

Example: m = (yB - yA) / (xB - xA), où A(xA, yA) et B(xB, yB) sont deux points distincts de la droite.

Un exemple concret est fourni pour illustrer ce calcul, montrant comment déterminer la pente d'une droite passant par deux points donnés.

La page se termine par une introduction au tableau de signe, un outil important pour analyser le comportement d'une fonction linéaire. Ce tableau permet de visualiser les intervalles où la fonction est positive, négative ou nulle.

Vocabulary: Le tableau de signe est une représentation graphique qui montre les variations du signe d'une fonction sur différents intervalles de son domaine de définition.

En résumé, cette page offre une vue d'ensemble complète des équations de droite en mathématiques, couvrant leur forme générale, le cas particulier des droites parallèles à l'axe des ordonnées, le calcul de la pente, et l'analyse du signe de la fonction associée.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

20 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 17 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.