Les bases des suites arithmétiques et géométriques
Une suite arithmétique, c'est quand tu ajoutes toujours la même valeur pour passer d'un terme au suivant. Par exemple : 2, 5, 8, 11... onajoute+3aˋchaquefois. La formule magique : U_{n+1} = U_n + r, où r est cette fameuse constante qu'on appelle la raison.
Pour une suite géométrique, tu multiplies toujours par le même nombre. Imagine : 3, 6, 12, 24... (on multiplie par 2). La formule : U_{n+1} = U_n × q, où q est le facteur multiplicatif.
💡 Astuce : Pour prouver qu'une suite est arithmétique ou géométrique, calcule les premiers termes et vérifie que la différence (ou le quotient) entre termes consécutifs reste constante.
Formules essentielles : Pour l'arithmétique, si tu connais le premier terme U₀ : U_n = U₀ + nr. Pour la géométrique : U_n = U₀ × q^n. Ces formules te permettent de trouver n'importe quel terme directement !