Matières

Matières

Plus

Découvre le Mouvement dans un Champ de Pesanteur et Électrique Uniforme - Exercices Corrigés PDF

Voir

Découvre le Mouvement dans un Champ de Pesanteur et Électrique Uniforme - Exercices Corrigés PDF
user profile picture

Loloadras

@loloadras_oqfr

·

6 Abonnés

Suivre

Expert en la matière

This document covers equations of motion in uniform gravitational and electric fields. It provides detailed mathematical derivations for the equations of motion and trajectories in both cases.

Key points:
• Equations are derived using Newton's second law of motion
• Initial conditions and integration are used to obtain position equations
• Trajectory equations are presented for both gravitational and electric fields
• The document uses vector notation and calculus concepts

Highlight: The material appears to be aimed at advanced high school or undergraduate physics students studying kinematics and dynamics in uniform fields.

25/04/2022

219

Equation horraine pesenteur
Dans un Referentiel Galifen, d'après le 2ome
bi de Nureton EF = mxd. Dans un champs
de pesenheur uniforme go, la

Voir

Equation of Motion in a Uniform Electric Field

This page derives the equations of motion for a charged particle in a uniform electric field. The approach is similar to that used for the gravitational field, but with the electric force replacing gravity.

Definition: A uniform electric field is one where the electric field strength E is constant in magnitude and direction throughout the region of interest.

The derivation begins with Newton's second law in a Galilean reference frame, F = ma. For a particle with charge q in an electric field E, the force is given by Fe = qE.

Vocabulary: Electric field - A region in space where an electric charge experiences a force.

Equating the electric force to mass times acceleration yields:

a = qE/m

This acceleration is constant, similar to the gravitational case, but its magnitude depends on the charge-to-mass ratio of the particle.

The page then presents the initial conditions and integrates the acceleration equation twice to obtain the position equations:

x = V₀t y = ½ × (qE/m) × t²

Example: These equations describe the motion of a charged particle initially moving horizontally in a vertical electric field.

The trajectory equation is derived by eliminating t:

y = (qE / (2mV₀²)) × x²

Highlight: This parabolic equation is crucial for solving Particule chargée dans un champ électrique uniforme exercices corrigés pdf problems.

The page concludes with a summary of the equations of motion and trajectory for a charged particle in a uniform electric field, providing a comprehensive set of tools for analyzing such systems.

Equation horraine pesenteur
Dans un Referentiel Galifen, d'après le 2ome
bi de Nureton EF = mxd. Dans un champs
de pesenheur uniforme go, la

Voir

Equation of Motion in a Uniform Gravitational Field

This page focuses on deriving the equations of motion for an object in a uniform gravitational field. The derivation starts with Newton's second law of motion and applies it to the specific case of an object in a gravitational field.

Definition: A uniform gravitational field is one where the gravitational acceleration g is constant throughout the region of interest.

The page begins by stating the fundamental equation F = ma in a Galilean reference frame. It then identifies that in a uniform gravitational field, the force is given by P = mg, where m is the mass and g is the gravitational acceleration vector.

Vocabulary: Galilean reference frame - A frame of reference in which Newton's laws of motion are valid.

The derivation proceeds by equating the gravitational force to mass times acceleration, resulting in g = a. This is then separated into components, with the vertical acceleration being -g.

Initial conditions are introduced, and the equation is integrated twice to obtain the position equations. The resulting equations are:

x = cos(α) × V₀ × t y = -½ × g × t² + sin(α) × V₀ × t

Example: These equations describe the motion of a projectile launched at an angle α with initial velocity V₀.

The page concludes by presenting the trajectory equation, which relates y to x:

y = -½ × g × (x / (cos(α) × V₀))² + tan(α) × x

Highlight: This equation is particularly useful for analyzing the path of projectiles and solving Exercice corrigé mouvement d'un projectile problems.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

15 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.

Découvre le Mouvement dans un Champ de Pesanteur et Électrique Uniforme - Exercices Corrigés PDF

user profile picture

Loloadras

@loloadras_oqfr

·

6 Abonnés

Suivre

Expert en la matière

This document covers equations of motion in uniform gravitational and electric fields. It provides detailed mathematical derivations for the equations of motion and trajectories in both cases.

Key points:
• Equations are derived using Newton's second law of motion
• Initial conditions and integration are used to obtain position equations
• Trajectory equations are presented for both gravitational and electric fields
• The document uses vector notation and calculus concepts

Highlight: The material appears to be aimed at advanced high school or undergraduate physics students studying kinematics and dynamics in uniform fields.

25/04/2022

219

 

Tle

 

Physique/Chimie

11

Equation horraine pesenteur
Dans un Referentiel Galifen, d'après le 2ome
bi de Nureton EF = mxd. Dans un champs
de pesenheur uniforme go, la

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Equation of Motion in a Uniform Electric Field

This page derives the equations of motion for a charged particle in a uniform electric field. The approach is similar to that used for the gravitational field, but with the electric force replacing gravity.

Definition: A uniform electric field is one where the electric field strength E is constant in magnitude and direction throughout the region of interest.

The derivation begins with Newton's second law in a Galilean reference frame, F = ma. For a particle with charge q in an electric field E, the force is given by Fe = qE.

Vocabulary: Electric field - A region in space where an electric charge experiences a force.

Equating the electric force to mass times acceleration yields:

a = qE/m

This acceleration is constant, similar to the gravitational case, but its magnitude depends on the charge-to-mass ratio of the particle.

The page then presents the initial conditions and integrates the acceleration equation twice to obtain the position equations:

x = V₀t y = ½ × (qE/m) × t²

Example: These equations describe the motion of a charged particle initially moving horizontally in a vertical electric field.

The trajectory equation is derived by eliminating t:

y = (qE / (2mV₀²)) × x²

Highlight: This parabolic equation is crucial for solving Particule chargée dans un champ électrique uniforme exercices corrigés pdf problems.

The page concludes with a summary of the equations of motion and trajectory for a charged particle in a uniform electric field, providing a comprehensive set of tools for analyzing such systems.

Equation horraine pesenteur
Dans un Referentiel Galifen, d'après le 2ome
bi de Nureton EF = mxd. Dans un champs
de pesenheur uniforme go, la

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Equation of Motion in a Uniform Gravitational Field

This page focuses on deriving the equations of motion for an object in a uniform gravitational field. The derivation starts with Newton's second law of motion and applies it to the specific case of an object in a gravitational field.

Definition: A uniform gravitational field is one where the gravitational acceleration g is constant throughout the region of interest.

The page begins by stating the fundamental equation F = ma in a Galilean reference frame. It then identifies that in a uniform gravitational field, the force is given by P = mg, where m is the mass and g is the gravitational acceleration vector.

Vocabulary: Galilean reference frame - A frame of reference in which Newton's laws of motion are valid.

The derivation proceeds by equating the gravitational force to mass times acceleration, resulting in g = a. This is then separated into components, with the vertical acceleration being -g.

Initial conditions are introduced, and the equation is integrated twice to obtain the position equations. The resulting equations are:

x = cos(α) × V₀ × t y = -½ × g × t² + sin(α) × V₀ × t

Example: These equations describe the motion of a projectile launched at an angle α with initial velocity V₀.

The page concludes by presenting the trajectory equation, which relates y to x:

y = -½ × g × (x / (cos(α) × V₀))² + tan(α) × x

Highlight: This equation is particularly useful for analyzing the path of projectiles and solving Exercice corrigé mouvement d'un projectile problems.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

15 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.