Diagramme en bâtons et médiane
Cette section aborde deux outils importants de la statistique descriptive : le diagramme en bâtons et la médiane.
Le diagramme en bâtons est présenté comme une méthode de représentation visuelle des séries statistiques.
Définition: Un diagramme en bâton est une représentation graphique où chaque catégorie est représentée par un bâton dont la hauteur est proportionnelle à l'effectif ou à la fréquence de cette catégorie.
La médiane est ensuite introduite comme une mesure de position centrale.
Définition: La médiane M est une valeur qui partage la population d'une série statistique en deux sous-ensembles tels que 50% des valeurs lui sont inférieures ou égales, et 50% lui sont supérieures ou égales.
Deux exemples illustrent le calcul de la médiane :
Exemple: Pour une série impaire 9,12,14,15,16,17,21,24,26, la médiane est M = 16.
Exemple: Pour une série paire 7,9,11,14,15,16, la médiane est M = 11+14 / 2 = 12,5.
Highlight: La méthode de calcul de la médiane diffère selon que l'effectif total est pair ou impair. Pour un effectif impair, la médiane est toujours une des valeurs de la série, tandis que pour un effectif pair, elle peut être la moyenne de deux valeurs centrales.