Matières

Matières

Plus

Comment calculer le volume et l'aire des pyramides, cylindres et parallélépipèdes

Voir

Comment calculer le volume et l'aire des pyramides, cylindres et parallélépipèdes
user profile picture

Clémence BERNARD

@klems_brnrd

·

70 Abonnés

Suivre

This document provides an overview of various geometric shapes and their properties, focusing on cubes, prisms, pyramids, parallelepipeds, cylinders, cones, and spheres. It details their characteristics, formulas for calculating volume and surface area, and key components.

• Cubes are introduced with their defining features of 6 square faces, 8 vertices, and 12 edges.
• Prisms and pyramids are explained, highlighting their bases and lateral faces.
• Parallelepipeds are described, emphasizing their rectangular faces and volume calculation.
• Cylinders, cones, and spheres are presented with their specific attributes and formulas.

18/09/2022

278

LE CUBE
6 FACES
CARREES
8 SONNETS, 12 ARÊTES
a = LONGUEUR L ARÊTE
PRISME DROIT
solides usuels
A B C D
BFGC
D.H
PYRAMIDE
A
VOLUME =
D
Tr
TV
-

Voir

Advanced Geometric Shapes and Formulas

This page delves deeper into the properties of cylinders and introduces cones and spheres, providing formulas for calculating their volumes and surface areas.

The cylinder is further explored, with its key components identified: axis, radius, and generatrix. The formula for the volume of a cylinder is given as V = πr²h, where r is the radius of the base and h is the height.

Definition: The generatrix of a cylinder is the line segment that, when rotated around the axis, generates the lateral surface of the cylinder.

The cone of revolution is introduced, highlighting its key features such as the apex, base, and generatrix.

Vocabulary: The generatrix of a cone is the line segment from the apex to a point on the circumference of the base.

Formulas for the cone are provided, including:

  • Circumference of the base: 2πr
  • Area of the circular base: πr²
  • Volume: V = (1/3)πr²h

Highlight: The volume of a cone is one-third the volume of a cylinder with the same base and height.

The sphere is briefly mentioned, with formulas for its surface area and volume:

  • Surface area of a sphere: 4πr²
  • Volume of a sphere (also called a ball): (4/3)πr³

Example: To calculate the volume of a sphere with a radius of 5 cm, you would use the formula V = (4/3)π(5³), which equals approximately 523.6 cm³.

This page provides a comprehensive overview of these advanced geometric shapes, offering essential formulas for volume and surface area calculations, which are crucial for students studying geometry and mathematics.

LE CUBE
6 FACES
CARREES
8 SONNETS, 12 ARÊTES
a = LONGUEUR L ARÊTE
PRISME DROIT
solides usuels
A B C D
BFGC
D.H
PYRAMIDE
A
VOLUME =
D
Tr
TV
-

Voir

Cube and Prism Properties

This page introduces the fundamental properties of cubes and prisms, along with basic information about pyramids and parallelepipeds.

The cube is presented as a regular polyhedron with six square faces, eight vertices, and twelve edges. Its volume is calculated using the formula a³, where 'a' is the length of an edge.

Definition: A cube is a three-dimensional solid object with six square faces of equal size.

Prisms are introduced as polyhedra with parallel and congruent polygonal bases, and rectangular lateral faces.

Vocabulary: A prism is a solid with two identical ends (bases) and flat sides.

The page also touches on pyramids, defining them as polyhedra with a polygonal base and triangular lateral faces that meet at a common vertex.

Highlight: The volume of a pyramid is calculated using the formula: Volume = (1/3) × Base area × Height.

Parallelepipeds are described as six-faced polyhedra with rectangular faces, eight vertices, and twelve edges.

Example: A parallelepiped rectangle has a volume calculated by multiplying length, width, and height (L × l × h).

The page concludes with an introduction to cylinders, defining them as three-dimensional figures with circular bases connected by a curved lateral surface.

Vocabulary: A cylinder of revolution is formed by rotating a rectangle around one of its sides.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

13 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.

Comment calculer le volume et l'aire des pyramides, cylindres et parallélépipèdes

user profile picture

Clémence BERNARD

@klems_brnrd

·

70 Abonnés

Suivre

This document provides an overview of various geometric shapes and their properties, focusing on cubes, prisms, pyramids, parallelepipeds, cylinders, cones, and spheres. It details their characteristics, formulas for calculating volume and surface area, and key components.

• Cubes are introduced with their defining features of 6 square faces, 8 vertices, and 12 edges.
• Prisms and pyramids are explained, highlighting their bases and lateral faces.
• Parallelepipeds are described, emphasizing their rectangular faces and volume calculation.
• Cylinders, cones, and spheres are presented with their specific attributes and formulas.

18/09/2022

278

 

3e

 

Maths

11

LE CUBE
6 FACES
CARREES
8 SONNETS, 12 ARÊTES
a = LONGUEUR L ARÊTE
PRISME DROIT
solides usuels
A B C D
BFGC
D.H
PYRAMIDE
A
VOLUME =
D
Tr
TV
-

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Advanced Geometric Shapes and Formulas

This page delves deeper into the properties of cylinders and introduces cones and spheres, providing formulas for calculating their volumes and surface areas.

The cylinder is further explored, with its key components identified: axis, radius, and generatrix. The formula for the volume of a cylinder is given as V = πr²h, where r is the radius of the base and h is the height.

Definition: The generatrix of a cylinder is the line segment that, when rotated around the axis, generates the lateral surface of the cylinder.

The cone of revolution is introduced, highlighting its key features such as the apex, base, and generatrix.

Vocabulary: The generatrix of a cone is the line segment from the apex to a point on the circumference of the base.

Formulas for the cone are provided, including:

  • Circumference of the base: 2πr
  • Area of the circular base: πr²
  • Volume: V = (1/3)πr²h

Highlight: The volume of a cone is one-third the volume of a cylinder with the same base and height.

The sphere is briefly mentioned, with formulas for its surface area and volume:

  • Surface area of a sphere: 4πr²
  • Volume of a sphere (also called a ball): (4/3)πr³

Example: To calculate the volume of a sphere with a radius of 5 cm, you would use the formula V = (4/3)π(5³), which equals approximately 523.6 cm³.

This page provides a comprehensive overview of these advanced geometric shapes, offering essential formulas for volume and surface area calculations, which are crucial for students studying geometry and mathematics.

LE CUBE
6 FACES
CARREES
8 SONNETS, 12 ARÊTES
a = LONGUEUR L ARÊTE
PRISME DROIT
solides usuels
A B C D
BFGC
D.H
PYRAMIDE
A
VOLUME =
D
Tr
TV
-

Inscris-toi pour voir le contenu. C'est gratuit!

Accès à tous les documents

Améliore tes notes

Rejoins des millions d'étudiants

En t'inscrivant, tu acceptes les Conditions d'utilisation et la Politique de confidentialité.

Cube and Prism Properties

This page introduces the fundamental properties of cubes and prisms, along with basic information about pyramids and parallelepipeds.

The cube is presented as a regular polyhedron with six square faces, eight vertices, and twelve edges. Its volume is calculated using the formula a³, where 'a' is the length of an edge.

Definition: A cube is a three-dimensional solid object with six square faces of equal size.

Prisms are introduced as polyhedra with parallel and congruent polygonal bases, and rectangular lateral faces.

Vocabulary: A prism is a solid with two identical ends (bases) and flat sides.

The page also touches on pyramids, defining them as polyhedra with a polygonal base and triangular lateral faces that meet at a common vertex.

Highlight: The volume of a pyramid is calculated using the formula: Volume = (1/3) × Base area × Height.

Parallelepipeds are described as six-faced polyhedra with rectangular faces, eight vertices, and twelve edges.

Example: A parallelepiped rectangle has a volume calculated by multiplying length, width, and height (L × l × h).

The page concludes with an introduction to cylinders, defining them as three-dimensional figures with circular bases connected by a curved lateral surface.

Vocabulary: A cylinder of revolution is formed by rotating a rectangle around one of its sides.

Rien ne te convient ? Explore d'autres matières.

Knowunity est la meilleure application scolaire dans cinq pays européens.

Knowunity a été mis en avant par Apple et a toujours été en tête des classements de l'App Store dans la catégorie Éducation en Allemagne, en Italie, en Pologne, en Suisse et au Royaume-Uni. Rejoins Knowunity aujourd'hui et aide des millions d'étudiants à travers le monde.

Ranked #1 Education App

Chargement dans le

Google Play

Chargement dans le

App Store

Knowunity est la meilleure application scolaire dans cinq pays européens.

4.9+

Note moyenne de l'appli

13 M

Les élèsves utilisent Knowunity

#1

Dans les palmarès des applications scolaires de 12 pays

950 K+

Les élèves publient leurs fiches de cours

Tu n'es toujours pas convaincu ? Regarde ce que disent les autres élèves ...

Louis B., utilisateur iOS

J'aime tellement cette application [...] Je recommande Knowunity à tout le monde ! !! Je suis passé de 11 à 16 grâce à elle :D

Stefan S., utilisateur iOS

L'application est très simple à utiliser et bien faite. Jusqu'à présent, j'ai trouvé tout ce que je cherchais :D

Lola, utilisatrice iOS

J'adore cette application ❤️ Je l'utilise presque tout le temps pour réviser.