Le théorème de Pythagore et sa réciproque
Cette page présente le théorème de Pythagore et sa réciproque, deux concepts essentiels en géométrie pour les élèves de collège.
Le théorème de Pythagore
Le théorème de Pythagore est énoncé comme suit : dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés.
Définition: Si ABC est un triangle rectangle en A, alors BC² = AB² + AC², où BC est l'hypoténuse.
Un exemple pratique illustre l'application du théorème :
Exemple: Dans un triangle ABC rectangle en A, avec AC = 2,4 cm et AB = 4,5 cm, on calcule BC :
BC² = AB² + AC²
BC² = 4,5² + 2,4²
BC² = 20,25 + 5,76
BC² = 26,01
Donc BC = √26,01 ≈ 5,1 cm
La réciproque du théorème de Pythagore
La réciproque du théorème de Pythagore est également présentée :
Définition: Si, dans un triangle, le carré du plus grand côté est égal à la somme des carrés des deux autres côtés, alors le triangle est rectangle.
Un exemple est donné pour illustrer l'utilisation de la réciproque :
Exemple: Pour un triangle POL avec PO = 6 cm, OL = 12 cm, et PL = 9 cm, on vérifie s'il est rectangle en calculant OL² = 144 et en le comparant à PO² + PL² = 36 + 81 = 117.
Highlight: La réciproque de Pythagore est un outil puissant pour vérifier si un triangle est rectangle sans avoir à mesurer ses angles.